K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

Chọn D

Sau khi chia tiền lần đầu tiên sẽ có 8 trường hợp xảy ra như sau:

Raashan

Sylvia

Ted

1

1

1

1

1

1

2

1

0

2

0

1

1

2

0

0

2

1

1

0

2

0

1

2

Các số lần lượt là số tiền của mỗi bạn. Có hai trường hợp cho kết quả (1;1;1) đó là RaashanSylviaTed Raashan hoặc Raashan Ted Sylvia Raashan.

Với mỗi trường hợp cho kết quả (1;1;1) thì lượt chơi tiếp theo sẽ có 1 4  cơ hội để số tiền mỗi người bằng nhau.

Đối với trường hợp một người có 2$, một người có 1$ và người còn lại không có tiền thì lượt chơi thứ hai sẽ có 4 trường hợp xảy ra. Không mất tính tổng quát ta giả sử Raashan có 2$, Sylvia có 1$ và Ted không có tiền, ta có những cách chuyển tiền như sau:

 

-    Raashan ⇆  Sylvia và Ted không nhận được tiền.

Raashan  Sylvia  Ted.

-    Raashan Ted  Sylvia.

-    Sylvia  Raashan Ted.

Như vậy trong 4 khả năng trên chỉ có một khả năng cho kết quả (1;1;1) chiếm tỉ lệ 1 4

Cứ tiếp tục chơi như vậy đến lượt thứ 2019. Khi đó xác suất mỗi người chơi có 1$ là

18 tháng 12 2016

kgm=4^10

Xs=1/4^10

14 tháng 8

Bài giải

Gọi hệ trục Oxyz với A(0;0;0), B(a;0;0), C(a;a;0), D(0;a;0). Gọi S(p;q;h).

SA = SB = a:
p² + q² + h² = a²
(p - a)² + q² + h² = a² ⇒ p = a/2

SC = a√3:
a²/4 + (q - a)² + h² = 3a²
Từ SA: q² + h² = 3a²/4 ⇒ a²/4 + q² - 2aq + a² + h² = 3a²
2a² - 2aq = 3a² ⇒ q = -a/2 ⇒ h² = a²/2 ⇒ h = a√2/2

S(a/2; -a/2; a√2/2)
H(a/4; -a/4; a√2/4), K(3a/4; -a/4; a√2/4)
M(x; x; 0), 0 ≤ x ≤ a
N(a; t; 0) ∈ BC

HK = (a/2; 0; 0)
HM = (x - a/4; x + a/4; -a√2/4)
n = HK × HM = (0; a²√2/8; a/2(x + a/4))

Mặt phẳng (HKM): (a²√2/8)(y + a/4) + (a/2)(x + a/4)(z - a√2/4) = 0

Với N(a; t; 0): t = x ⇒ N(a; x; 0)

HK = a/2, MN = a - x
d = √[(x + a/4)² + a²/8]

S = (a/2 + a - x)/2 × d = (3a/2 - x)/2 × √[(x + a/4)² + a²/8]

Giải S'(x) = 0 ⇒ x = 5a/8

Kết luận: x = 5a/8 thì diện tích HKMN nhỏ nhất

Cho mình xin 1 tick với ạ