Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 6 người đó là A; B; C; D; E; F
Chọn một ngươì bất kì trong 6 người thì người đó quen hoặc không quen với mỗi người trong 5 người còn lại. Coi người đó là A
Trong 5 người còn lại, chắc chắn có ít nhất 3 người quen hoặc không quen A. Gọi 3 người đó là B; C; D
+) Trường hợp 1: A quen B; C; D.
Nếu B; C; D đôi một không quen nhau thì chọn luôn 3 người B; C; D
Nếu có 2 trong 3 người quen nhau , coi là B; C thì ta có 3 người A; B; C đôi một quen nhau
+) Trường hợp: A không quen B; C; D
Nếu B; C; D đôi một quen nhau ta chọn luôn 3 người B; C; D
Nếu 2 trong 3 người B; C không quen nhau ta có 3 người A; B; C không quen nhau
Vậy Trong 6 người bất kì, luôn chọn được 3 người quen hoặc không quen nhau
fghjklkjhgfdsdfghjkllllllllllkjhghjklkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiihhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Gọi 6 người bất kì là A, B, C, D, E
Trong 6 người đó ta chọn ra một người A.Trong 5 người còn lại ta chia thành 2 nhóm:
+Nhóm 1 gồm những người quen A
+Nhóm 2 gồm những người ko quen A
Có 5 người mà chỉ có 2 nhóm\(\implies\)Tồn tại ít nhất 3 người thuộc cùng một nhóm.Tức là tồn tại ít nhất 3 người quen A hoặc tồn tại ít nhất 3 người ko quen A
⊛Nếu tồn tại ít nhất 3 người quen A. Gọi 3 người đó là B, C, D
+Nếu trong 3 người B, C, D có 2 người nào đó quen nhau.Giả sử 2 người đó là B và C thì ta có 3 người A, B, C là 3 người đôi một quen nhau
+Nếu trong 3 người B, C, D ko có 2 người nào đó quen nhau thì 3 người B, C, D là 3 người đôi một ko quen nhau
⊛Nếu tồn tại 3 người ko quen A.Giả sử 3 người đó là D, E, G
+Trong 3 người D, E, G nếu có 2 người nào đó ko quen nhau.Giả sử 2 người đó là D và E thì 3 người A, D, E là 3 người đôi một ko quen nhau
+Nếu trong 3 người D, E, G ko có 2 người nào ko quen nhau thì 3 người D, E, G là 3 người đôi một quen nhau
Vậy trong 6 người bất kì luôn tồn tại 3 người đôi một quen nhau hoặc 3 người đôi một ko quen nhau (ĐPCM)
Bạn tham khảo nha
https://olm.vn/hoi-dap/detail/12108382975.html
k mik mik sẽ gửi link cho bạn! ^_^
ohco nani natara oh co nani natara
a a a totemo daisuki DORAEMON
Xét A là 1 người bất kỳ trong phòng
\(\Rightarrow\)A quen ít nhất 67 người
Nếu ta mời những người không quen A ra ngoài thì số người ra nhiều nhất là 32
Trong phòng còn lại 68 người. \(\Rightarrow\)gọi B là 1 người quen A \(\Rightarrow\) có nhiều nhất 32 người B không quen trong phòng
\(\Rightarrow\) số nguời còn lại là 34 \(\Rightarrow\)gọi C là 1 người quen A và B \(\Rightarrow\) C không quen nhiều nhất 32 người trong phòng
\(\Rightarrow\)trong phòng còn lại 44 người \(\Rightarrow\)ngoài A,B,CA,B,C còn 1 người giả sử là D,khi đó A,B,C,DA,B,C,D đôi 1 quen nhau(đpcm)
Do trong phòng có 100 người, mỗi người quen it nhất 67 người còn lại nên số người mà người đó không quen nhiều nhất là:
100-67-1= 32( người)
Ta giả sử 1 người bất kỳ trong 100 người đó là A. Nếu ta loại những người mà A không quen ra khỏi phòng thì trong phòng sẽ còn ít nhất 68 người( trong đó có A).
Ta lại giả sử 1 trong 68 người còn lại trong phòng( khác A) là B. Nếu ta loại đi những người mà B không quen ra khỏi phòng thì trong phòng sẽ còn ít nhất 68-32=36( người) trong đó có A và B.
............................. 36......................................(khác A,B) là C.............................................C................................................
.....................................36-32=4( người) trong đó có A,B và C.
Trong 4 người còn lại ta giả sử người khác A,B,C là D thì khi đó trong phòng có 4 người: A,B,C và D suy ra A,B,C,D đôi một quen nhau. Do đó tìm được 4 người mà 2 người bất kì trong số đó đều quen nhau( đpcm)
cái này khó ak nha
Do có 6 người bất kỳ nên ta đặt tên 6 người đó là A; B; C; D; E; F ứng với 6 điểm A; B; C; D; E; F như hình vẽ:
Nếu hai người quen nhau thì ta nối họ bới một đoạn thẳng màu đỏ.
Nếu hai người không quen nhau thì ta nối họ bởi một đoạn thẳng mầu đen.
Dễ thấy từ A có 5 đoạn thẳng AB; AC; AD; AE; AF. Mỗi đoạn thẳng này được vẽ bằng một trong hai màu đen và đỏ tất nhiên phải có 3 đoạn cùng được vẽ bằng một màu.
Không mất tính tổng quát, ta giả sử có 3 đoạn: AB; AD; và AE cùng được vẽ bằng một màu đỏ ( Xem hình vẽ).
Xét tam giác EBD có ba cạnh EB; BD; DE. Nếu cả ba cạnh này cùng được vẽ bằng một màu đen thì Người E, người B và người D không quen biết nhau ( ĐPCM). Nếu ba cạnh của tam giác EBD không cùng mầu thì sẽ có ít nhất một cạnh màu đỏ (Vì mỗi cạnh được vẽ bằng một trong hai màu đỏ hoặc đen). Không mất tính tổng quát, ta giả sử cạnh BD màu đỏ. Khi đó tam giác ABD có 3 cạnh màu đỏ nghĩa là Người A, người B và người D quen nhau ( Điều phải chứng minh).
Nếu 3 đoạn: AB; AD; và AE cùng được vẽ bằng một màu đen ta vẫn xét tam giácEBD có ba cạnh EB; BD; DE. Nếu cả ba cạnh của tam giác EBD cùng mầu đỏ thi 3 người E; B; D quen nhau. Nếu 3 cạnh của tam giác EBD không cùng mầu thì sẽ có ít nhất một cạnh màu đen (Vì mỗi cạnh được vẽ bằng một trong hai màu đỏ hoặc đen). Không mất tính tổng quát, ta giả sử cạnh BD màu đen. Khi đó tam giác ABD có 3 cạnh màu đen nghĩa là Người A, người B và người D không hề quen biết nhau ( Điều phải chúng minh).