K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2023

\(Q=x^2-20x+325\)

\(Q=x^2-20x+100+225\)

\(Q=\left(x-10\right)^2+225\)

mà \(\left(x-10\right)^2\ge0\)

\(\Rightarrow Q=\left(x-10\right)^2+225\ge225\)

\(\Rightarrow Min\left(Q\right)=225\)

11 tháng 7 2019

a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)

 Hay : P \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)

Vậy Pmin = 0 tại x  = -3/2

b) Ta có: \(\left|3-x\right|\ge0\forall x\)

=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)

hay P \(\ge\)2/5 \(\forall\)x

Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3

Vậy Pmin = 2/5 tại x = 3

11 tháng 7 2019

a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x

=> P>=0 với mọi x

P=0 khi x+3/2=0 <=> x=-3/2

Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2

19 tháng 8 2020

Toàn bộ đều tìm Max :)

D = -x2 + 30x - 10

D = -( x2 - 30x + 225 ) + 215

D = -( x - 15 )2 + 215

-( x - 15 )2 ≤ 0 ∀ x => -( x - 15 )2 + 215 ≤ 215

Đẳng thức xảy ra <=> x - 15 = 0 => x = 15

=> MaxD = 215 <=> x = 15

E = -2x2 + 9x + 30

E = -2( x2 - 9/2x + 81/16 ) + 321/8

E = -2( x - 9/4 )2 + 321/8

-2( x - 9/4 )2 ≤ 0 ∀ x => -2( x - 9/4 )2 + 321/8 ≤ 321/8

Đẳng thức xảy ra <=> x - 9/4 = 0 => x = 9/4

=> MaxE = 321/8 <=> x = 9/4

F = -5x2 - 20x - 4

F = -5( x2 + 4x + 4 ) + 16

F = -5( x + 2 )2 + 16

-5( x + 2 )2 ≤ 0 ∀ x => -5( x + 2 )2 + 16 ≤ 16

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MaxF = 16 <=> x = -2

19 tháng 8 2020

d) \(D=-x^2+30x-10\)

\(D=-\left(x^2-30x+10\right)\)

\(D=\left(x^2-30x+225-215\right)\)

\(D=-\left(x-15\right)^2+215\le215\)

Max D = 215 \(\Leftrightarrow x=15\)

e) \(E=-2x^2+9x+30\)

\(E=-2\left(x^2-\frac{9}{2}x-15\right)\)

\(E=-2\left(x-\frac{9}{4}\right)^2+\frac{321}{8}\le\frac{321}{8}\)

Max \(E=\frac{321}{8}\Leftrightarrow x=\frac{9}{4}\)

f) \(F=-5x^2-20x-4\)

\(F=-5\left(x^2+4x+\frac{4}{5}\right)\)

\(F=-5\left(x^2+4x+4+\frac{16}{5}\right)\)

\(F=-5\left(x+2\right)^2-16\le-16\)

Max F = -16 \(\Leftrightarrow x=-2\)

23 tháng 4 2019

a)  \(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)

Vậy giá trị nhỏ nhất \(=-1\)

b) \(\left(x-2\right)^2+5\ge5\)

\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)

\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)

Vậy giá trị lớn nhất \(=\frac{3}{5}\)

7 tháng 6 2017

vì \(x^2-5x+7=x^2-\frac{2.5}{2}x+\frac{25}{4}+\frac{3}{4}=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)nên phương trình xác định với mọi \(x\)

TXD :\(D=R\)Ta có :

\(A\left(x^2-5x+7\right)=x^2\Leftrightarrow x^2\left(A-1\right)-5Ax+7A=0\)

  1. Nếu \(A=1\Rightarrow5x=7\Leftrightarrow x=\frac{7}{5}\)tức biểu thức nhận được giá trị là \(1\)
  2. Nếu \(A\ne1\)Thì phương trình có nghiệm khi : \(\Delta\ge0\Leftrightarrow25A^2-4\left(A-1\right)7A\ge0\Rightarrow A\left(28-3A\right)\ge0\Leftrightarrow0\le A\le\frac{28}{3}\)Vậy nên \(0\le A\le\frac{28}{3}\)
  •             \(A_{Min}=0\Leftrightarrow\frac{x^2}{x^2-5x+7}=0\Leftrightarrow x=0\)
  •             \(A_{Max}=\frac{28}{3}\Leftrightarrow\frac{x^2}{x^2-5x+7}=\frac{28}{3}\Leftrightarrow x=\frac{-5A}{2\left(A-1\right)}\Leftrightarrow x=\frac{14}{5}\)
7 tháng 6 2017

Sorry em ko bt làm  em mới học lớp 5 thui

30 tháng 4 2016

ta thay M=(2011-x-1)/(2011-x)                  =1-1/(2011-x)                                         de M nho nhat thi 1/(2011-x) lon nhat suyra 2011-x nho nhat   va nguyen duong suy ra x=2010      suy ra gia tri nho nhat cua M=0