Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(\forall x;y\) ta có :
\(\left\{{}\begin{matrix}\left(x+y-3\right)^4\ge0\\\left(x-2y\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)
\(\Leftrightarrow\left(x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)
\(\Leftrightarrow Q\ge2012\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left(x+y-3\right)^4=0\\\left(x-2y\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=0\\x-2y=0\end{matrix}\right.\)
P >= 0
Dấu "=" xảy ra <=> x-2y=0 và y-2012=0
<=> x=4024 và y=2012
Vậy GTNN của P = 0 <=> x = 4024 và y = 2012
k mk nha
P >= 0
Dấu "=" xảy ra <=> x-2y=0 và y-2012=0
<=> x=4024 và y=2012
Vậy GTNN của P = 0 <=> x = 4024 và y = 2012
k mk nha
Ta có :
\(\left(-x+y-3\right)^4\ge0\)
\(\left(x-2y\right)^2\ge0\)
\(\Rightarrow P=\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)
Dấu " = " xảy ra khi \(\left(-x+y-3\right)^4=0\)vs \(\left(x-2y\right)^2=0\)
nên : * \(-x+y-3=0\)và \(x-2y=0\)
\(\Rightarrow y-x=3\)vs \(x=2y\)
\(\Rightarrow x=y-3\)(1) vs \(x=2y\)(2)
Từ (1) vs (2), ta có : \(y-3=2y\)
\(\Rightarrow y=3\)
\(\Rightarrow x=y-3=3-3=0\)
\(\Rightarrow Min\) \(P=2012\) khi x=0 vs y=3.