\(\dfrac{3x+5}{x^2-5x}+\dfrac{25-x}{25-5x}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2021

\(a,=\dfrac{15x+25-25x+x^2}{5x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\\ b,=\dfrac{x^2-x-2+x-7+x+3}{\left(x+3\right)\left(x-2\right)}=\dfrac{x^2+x-6}{x^2+x-6}=1\)

8 tháng 12 2021

\(a,\dfrac{3x+5}{x^2-5x}+\dfrac{25-x}{25-5x}\)

\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{25-x}{5\left(5-x\right)}\)

\(=\dfrac{-3x-5}{x\left(5-x\right)}+\dfrac{25-x}{5\left(5-x\right)}\)

\(=\dfrac{5\left(-3x-5\right)}{5x\left(5-x\right)}+\dfrac{x\left(25-x\right)}{5x\left(5-x\right)}\)

\(=\dfrac{-15x-25+25x-x^2}{5x\left(5-x\right)}\)

\(=\dfrac{10x-25-x^2}{5x\left(5-x\right)}\)

\(=\dfrac{-\left(5-x\right)^2}{5x\left(5-x\right)}\)

\(=\dfrac{-5+x}{5x}\)

\(b,\dfrac{x+1}{x+3}+\dfrac{x-7}{x^2+x-6}+\dfrac{1}{x-2}\)

\(=\dfrac{x+1}{x+3}+\dfrac{x-7}{\left(x+3\right)\left(x-2\right)}+\dfrac{1}{x-2}\)

\(=\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}+\dfrac{x-7}{\left(x+3\right)\left(x-2\right)}+\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x^2-2x+x-2+x-7+x+3}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x^2+x-6}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x^2+x-6}{x^2-2x+3x-6}\)

\(=\dfrac{x^2+x-6}{x^2+x-6}\)

\(=1\)

21 tháng 4 2017

Giải bài 25 trang 47 Toán 8 Tập 1 | Giải bài tập Toán 8

16 tháng 6 2017

dap-an-bai-25_fix

19 tháng 12 2018

Bài 1:

a) \(\dfrac{3x^2-5}{x^2-5x}+\dfrac{5-15x}{5x-25}\)

\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{5\left(1-3x\right)}{5\left(x-5\right)}\)

\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{1-3x}{x-5}\)

\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{x\left(1-3x\right)}{x\left(x-5\right)}\)

\(=\dfrac{3x^2-5+x\left(1-3x\right)}{x\left(x-5\right)}\)

\(=\dfrac{3x^2-5+x-3x^2}{x\left(x-5\right)}\)

\(=\dfrac{-5+x}{x\left(x-5\right)}\)

\(=\dfrac{x-5}{x\left(x-5\right)}\)

\(=\dfrac{1}{x}\)

b) \(\dfrac{4+x^3}{x-3}-\dfrac{2x+2x^2}{x-3}+\dfrac{2x-13}{x-3}\)

\(=\dfrac{\left(4+x^3\right)-\left(2x+2x^2\right)+\left(2x-13\right)}{x-3}\)

\(=\dfrac{4+x^3-2x-2x^2+2x-13}{x-3}\)

\(=\dfrac{x^3-2x^2-9}{x-3}\)

\(=\dfrac{x^3-3x^2+x^2-9}{x-3}\)

\(=\dfrac{x^2\left(x-3\right)+\left(x-3\right)\left(x+3\right)}{x-3}\)

\(=\dfrac{\left(x-3\right)\left(x^2+x+3\right)}{x-3}\)

\(=x^2+x+3\)

c) \(\dfrac{2}{x-5}+\dfrac{x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{2\left(x+5\right)+x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{2x+10+x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{3\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{3}{x+5}\)

d) Đề sai?

Bài 2:

\(A=2\left(x+1\right)+\left(3x+2\right)\left(3x-2\right)-9x^2\)

\(A=2x+2+9x^2-4-9x^2\)

\(A=2x-2\)

\(A=2\left(x-1\right)\)

Thay x = 15 vào A ta được:

\(A=2\left(15-1\right)\)

\(A=2.14=28\)

11 tháng 4 2017

\(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\left(ĐKXĐ:x\ne\pm1\right)\\ \Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Rightarrow x^2+x-2x=0\\ \Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\Rightarrow x=1\left(loại\right)\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={0}.

b)

\(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(x+2\right)^2+3-2x=x^2+10\\ \Leftrightarrow x^2+4x+4-2x-x^2=10-3\)

\(\Leftrightarrow2x+4=7\Leftrightarrow2x=7-4=3\Rightarrow x=\dfrac{3}{2}\left(loại\right)\)

vậy phương trình đã cho vô nghiệm.

c)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\left(ĐKXĐ:x\ne\pm5\right)\)

\(\Leftrightarrow\dfrac{\left(x+5\right)^2}{\left(x-5\right)\left(x+5\right)}-\dfrac{\left(x-5\right)^2}{\left(x+5\right)\left(x-5\right)}=\dfrac{20}{\left(x+5\right)\left(x-5\right)}\)

\(\Rightarrow\left(x+5\right)^2-\left(x-5\right)^2=20\)

\(\Leftrightarrow x^2+25x+25-x^2+25x-25=20\\ \Leftrightarrow50x=20\Rightarrow x=\dfrac{2}{5}\)

vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{2}{5}\right\}\)

d)\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\left(ĐKXĐ:x\ne\pm\dfrac{2}{3}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\\ \Leftrightarrow9x^2+12x+4-18x+12-9x^2=0\\ \Leftrightarrow16-6x=0\Leftrightarrow6x=16\Rightarrow x=\dfrac{16}{6}\)

vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{16}{6}\right\}\)

e)\(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\left(ĐKXĐ:x\ne\dfrac{1}{5};\dfrac{3}{5}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(3\left(3-5x\right)+2\left(5x-1\right)=4\\ \Leftrightarrow9-15x+10x-2=4\\ \Leftrightarrow-5x=-3\Rightarrow x=\dfrac{3}{5}\left(loại\right)\)

vậy phương trình đã cho vô nghiệm.

f)

\(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\left(ĐKXĐ:x\ne\pm\dfrac{1}{4}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(-3\left(4x+1\right)=2\left(4x-1\right)-8-6x\\ \Leftrightarrow-12x-3=8x-2-8-6x\\ \Leftrightarrow-14x=-7\Rightarrow x=\dfrac{1}{2}\)

vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{1}{2}\right\}\)

g)

\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\left(ĐKXĐ:y\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(y-1\right)\left(y+2\right)-5\left(y-2\right)=12+y^2-4\\ \Leftrightarrow y^2+y-2-5y+10=12+y^2-4\\ \Leftrightarrow-4y+8=8\Leftrightarrow-4y=0\Rightarrow y=0\)

vậy phương trình có tập nghiệm là S={0}

h)

\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\left(ĐKXĐ:x\ne\pm1\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow x^2+2x+1-x^2+2x-1=4\\ \Leftrightarrow4x=4\Rightarrow x=1\)

vậy phương trình có tập nghiệm là S={1}.

i)

\(\dfrac{2x-3}{x+2}-\dfrac{x+2}{x-2}=\dfrac{2}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(2x-3\right)\left(x-2\right)-\left(x+2\right)=2\\ \Leftrightarrow2x^2-7x+6-x^2-4x-4=2\\ \Leftrightarrow x^2-11x=0\Rightarrow\left[{}\begin{matrix}x=0\\x-11=0\Rightarrow x=11\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={0;11}

j)

\(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\left(ĐKXĐ:x\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(x-1=-3\left(x+2\right)\Leftrightarrow x-1=-3x-6\\ \Leftrightarrow4x=5\Rightarrow x=\dfrac{5}{4}\)

vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{5}{4}\right\}\)

11 tháng 4 2017

có tố chất đánh máy !!!eoeoeoeoleuleu

26 tháng 11 2017

a, \(\dfrac{4}{x^2-4}-\dfrac{2x}{x^2-4}=\dfrac{4-2x}{x^2-4}=\dfrac{-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=-\dfrac{2}{x+2}\)

\(b,\dfrac{3x+5}{x^2-5x}+\dfrac{x-25}{5x-25}\)

\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{x-25}{5\left(x-5\right)}\)

\(=\dfrac{5\left(3x+5\right)}{5x\left(x-5\right)}+\dfrac{\left(x-25\right)x}{5x\left(x-5\right)}\)

\(=\dfrac{15x+25+x^2-25x}{5x\left(x-5\right)}\)

\(=\dfrac{x^2-10x+25}{5x\left(x-5\right)}\)

\(=\dfrac{\left(x-5\right)^2}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\)

\(c,\left(\dfrac{2}{x-1}-\dfrac{2}{x+1}\right).\dfrac{x^2+2x+1}{4}\)

\(=\left(\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right).\dfrac{\left(x+1\right)^2}{4}\)

\(=\dfrac{2x+2-2x+2}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x+1\right)^2}{4}\)

\(=\dfrac{4}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x+1\right)^2}{4}\)

\(=\dfrac{x+1}{x-1}\)

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

26 tháng 7 2018

các bn giúp mik với!! vài câu cx được

a: \(\Leftrightarrow-12x-4=8x-2-8-6x\)

=>-12x-4=2x-10

=>-14x=-6

hay x=3/7

b: \(\Leftrightarrow3\left(5x-3\right)-2\left(5x-1\right)=-4\)

=>15x-9-10x+2=-4

=>5x-7=-4

=>5x=3

hay x=3/5(loại)

c: \(\Leftrightarrow x^2-4+3x+3=3+x^2-x-2\)

\(\Leftrightarrow x^2+3x-1=x^2-x+1\)

=>4x=2

hay x=1/2(nhận)

9 tháng 5 2018

Mấy này bạn quy đồng lên cùng mẫu xong khử mẫu rồi giải. Dễ mà.

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)