Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MTC = x(x + 1)
Nhân tử phụ của x+1 là: x
Nhân tử phụ của x là: x+1
=> Ta có \(\frac{1}{{x + 1}} = \frac{x}{{x\left( {x + 1} \right)}}\) và \(\frac{1}{x} = \frac{{x + 1}}{{x\left( {x + 1} \right)}}\)
Trừ các tử thức của hai phân thức, có: x – x – 1 = -1
\( \Rightarrow \frac{1}{{x + 1}} - \frac{1}{x} = \frac{{ - 1}}{{x\left( {x + 1} \right)}}\)
Ta có:3x2 −3=3(x2−1)=3(x−1)(x+1)
x3 −1=(x−1)(x2 + x + 1)
MTC= 3(x−1)(x+1)(x2 + x + 1)
Nhân tử phụ của 3x2 − 3 là x2 + x + 1
Nhân tử phụ của x3 − 1 là 3(x+1)
Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:
\(\frac{1}{{3{{\rm{x}}^2} - 3}} = \frac{{{x^2} + x + 1}}{{3\left( {{x^2} - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{{x^2} + x + 1}}{{3\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}}\)
\(\frac{1}{{{x^3} - 1}} = \frac{{3\left( {x + 1} \right)}}{{3\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + x + 1} \right)}}\)
Ta có : `1/x; -1/y`
\(\dfrac{1}{x}=\dfrac{1\cdot y}{x\cdot y}=\dfrac{y}{xy}\\ -\dfrac{1}{y}=\dfrac{-1\cdot x}{y\cdot x}=-\dfrac{x}{xy}\)