Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,-3/5.2/7+-3/7.3/5+-3/7
=-3/7.2/5+(-3/7).3/5+(-3/7)
=-3/7(2/5+3/5+1)
=-3/7.2
=-6/7
Bài 1:
a) b) c) sẽ có bạn giải cho em thôi vì nó dễ tính tay cũng đc
d) \(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{23.26}\)
\(=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{23.26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\frac{6}{13}\)
\(=\frac{8}{13}\)
Bài 2:
a) b) c)
d)\(|\frac{5}{8}x+\frac{6}{7}|-\frac{4}{7}=\frac{10}{7}\)
\(\Leftrightarrow|\frac{5}{8}x+\frac{6}{7}|=2\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{6}{7}=2\\\frac{5}{8}x+\frac{6}{7}=-2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{8}{7}\\\frac{5}{8}x=\frac{-20}{7}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{64}{35}\\x=\frac{-32}{7}\end{cases}}}\)
Vậy \(x\in\left\{\frac{64}{35};\frac{-32}{7}\right\}\)
Bài 1 :
a) \(\left(\frac{2}{5}-\frac{5}{8}\right):\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-9}{40}:\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-27}{44}+\frac{1}{8}\)
\(=\frac{-43}{88}\)
\(\frac{-3}{5}\)và\(\frac{-5}{8}\)
\(MSC:40\)
\(\frac{-3}{5}=\frac{-3.8}{5.8}=\frac{-24}{40}\)
\(\frac{-5}{8}=\frac{-5.5}{8.5}=\frac{-25}{40}\)
a) \(\frac{21}{52}=\frac{210}{520}=1-\frac{310}{520}\)
\(\frac{213}{523}=1-\frac{310}{523}\)
Vì \(520< 523\)\(\Rightarrow\frac{1}{520}>\frac{1}{523}\)\(\Rightarrow\frac{310}{520}>\frac{310}{523}\)
\(\Rightarrow1-\frac{310}{520}< 1-\frac{310}{523}\)
hay \(\frac{21}{52}< \frac{213}{523}\)
b) \(\frac{1515}{9797}=\frac{15.101}{97.101}=\frac{15}{97}\); \(\frac{171171}{991991}=\frac{171.1001}{991.1001}=\frac{171}{991}\)
Ta có: \(\frac{15}{97}=\frac{150}{970}=1-\frac{820}{970}\); \(\frac{171}{991}=1-\frac{820}{991}\)
Vì \(970< 991\)\(\Rightarrow\frac{1}{970}>\frac{1}{991}\)\(\Rightarrow\frac{820}{970}>\frac{820}{991}\)
\(\Rightarrow1-\frac{820}{970}< 1-\frac{920}{991}\)
hay \(\frac{1515}{9797}< \frac{171171}{991991}\)
c) \(\frac{n+2}{n+3}=1-\frac{1}{n+3}\); \(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Vì \(n\inℕ^∗\)\(\Rightarrow n+3< n+4\)\(\Rightarrow\frac{1}{n+3}>\frac{1}{n+4}\)
\(\Rightarrow1-\frac{1}{n+3}< 1-\frac{1}{n+4}\)
hay \(\frac{n+2}{n+3}< \frac{n+3}{n+4}\)
d) \(\frac{n+7}{n+6}=1+\frac{1}{n+6}\); \(\frac{n+1}{n}=1+\frac{1}{n}\)
Vì \(n\inℕ^∗\)\(\Rightarrow n+6>n\)\(\Rightarrow\frac{1}{n+6}< \frac{1}{n}\)
\(\Rightarrow1+\frac{1}{n+6}< 1+\frac{1}{n}\)
hay \(\frac{n+7}{n+6}< \frac{n+1}{n}\)
\(\frac{4}{5}\)và \(\frac{-8}{-10}\)
\(\frac{-20}{24}\)và \(\frac{-5}{6}\)
\(\frac{7}{3}\)và \(\frac{-14}{-6}\)
\(\frac{-40}{8}\) và \(\frac{3}{8}\) ; \(\frac{-3}{9}\) và \(\frac{7}{9}\)
1=\(\frac{72}{72}\),-5 = \(\frac{-360}{72}\), \(\frac{3}{8}\)= \(\frac{27}{72}\), \(\frac{-1}{3}\)= \(\frac{-24}{72}\), \(\frac{-7}{-9}\)= \(\frac{56}{72}\)