Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các góc kề với \(\widehat {xOy}\) là: \(\widehat {yOz};\widehat {yOt}\)
b) Ta có:
\(\begin{array}{l}\widehat {xOy} + \widehat {yOz} + \widehat {zOt} = \widehat {xOt}\\ \Rightarrow 20^\circ + \widehat {zOt} + \widehat {zOt} = 90^\circ \\ \Rightarrow 2.\widehat {zOt} = 90^\circ - 20^\circ = 70^\circ \\ \Rightarrow \widehat {zOt} = 70^\circ :2 = 35^\circ \end{array}\)
a) Cách 1: Vì 2 góc có chung gốc O, chung cạnh Oy, 2 cạnh còn lại là Ox và Oz nằm về hai phía đối với đường thẳng chứa tia Oy nên hai góc xOy và yOz là hai góc kề nhau. Hơn nữa, hai góc xOy và yOz có tổng bằng góc xOz =180 độ nên hai góc xOy và yOz là hai góc bù nhau.
Vậy hai góc xOy và yOz là hai góc kề bù
Cách 2: Vì 2 góc có chung gốc O, chung cạnh Oy, 2 cạnh còn lại là Ox và Oz là hai tia đối nhau nên hai góc xOy và yOz là hai góc kề bù.
b) Cách 1: Vì 2 góc có chung gốc O, chung cạnh Oz, 2 cạnh còn lại là Oy và Ot nằm về hai phía đối với đường thẳng chứa tia Oz nên hai góc yOz và zOt là hai góc kề nhau. Hơn nữa, hai góc yOz và zOt có tổng bằng góc xOz =180 độ nên hai góc yOz và zOt là hai góc bù nhau.
Vậy hai góc yOz và zOt là hai góc kề bù
Cách 2: Vì 2 góc có chung gốc O, chung cạnh Oz, 2 cạnh còn lại là Oy và Ot là hai tia đối nhau nên hai góc yOz và zOt là hai góc kề bù.
c) Do
\(\begin{array}{l}\widehat {xOy} + \widehat {yOz} = \widehat {xOz} = 180^\circ ;\\\widehat {yOz} + \widehat {zOt} = \widehat {yOt} = 180^\circ \end{array}\)
Vậy \(\widehat {xOy} + \widehat {yOz} = \widehat {yOz} + \widehat {zOt}\)
\( \Rightarrow \widehat {xOy} = \widehat {zOt}\)
Chú ý: Ta có thể dùng dấu hiệu sau: 2 góc kề bù khi có chung đỉnh, chung một cạnh, 2 cạnh còn lại là 2 tia đối nhau.
Ta có :
\(\widehat{xOy}+\widehat{yOz}=180^o\) (2 góc kề bù)
\(\Rightarrow\widehat{yOz}=180^o-\widehat{xOy}\)
\(\Rightarrow\widehat{yOz}=180^o-80^o\)
\(\Rightarrow\widehat{yOz}=100^o\)
Ta lại có :
\(\widehat{tOz}=\widehat{tOy}+\widehat{yOz}\)
mà \(\widehat{tOy}=\dfrac{1}{2}\widehat{xOy}=\dfrac{1}{2}.80^o=40^o\) (Ot là phân giác góc xOy)
\(\Rightarrow\widehat{tOz}=40^o+100^o\)
\(\Rightarrow\widehat{tOz}=140^o\)
\(\widehat{xOt}=\dfrac{1}{2}\widehat{xOy}=\dfrac{1}{2}.80^o=40^o\) (Ot là phân giác góc xOy)
Vì \(\widehat {AOB}\) và \(\widehat {BOC}\) là 2 góc kề nhau nên \(\widehat {AOB} + \widehat {BOC} = \widehat {AOC}\), mà \(\widehat {AOC} = 80^\circ \) nên \(\widehat {AOB} + \widehat {BOC} = 80^\circ \)
Vì \(\widehat {AOB} = \frac{1}{5}.\widehat {AOC}\) nên \(\widehat {AOB} = \frac{1}{5}.80^\circ = 16^\circ \)
Như vậy,
\(\begin{array}{l}16^\circ + \widehat {BOC} = 80^\circ \\ \Rightarrow \widehat {BOC} = 80^\circ - 16^\circ = 64^\circ \end{array}\)
Vậy \(\widehat {AOB} = 16^\circ ;\widehat {BOC} = 64^\circ \)
Để vẽ các góc có số đo 100 độ, ta cần một cặp song song song và một cặp cạnh chéo nhau. Vì tia OZ được cho là tia đối của tia OX nên ta vẽ một đường thẳng đi qua điểm O và cắt tia OX tạo thành tia OZ. a) Trong hình vẽ trên, tên hai góc kề bù là góc xOY và góc yOZ. b) Để tính số đo góc yOZ, ta cần biết số đo góc xOY và biết rằng các góc kề bù có tổng bằng 180 độ. Vì vậy, đại lượng đo góc yOZ = 180 - đại lượng đo góc xOY. c) Để vẽ đường phân giác OT của góc xOY, ta có thể tìm trung điểm M của đoạn thẳng XY, sau đó vẽ đường thẳng đi qua đỉnh O và trung điểm M. - Để tính số đo góc TOY, ta biết rằng TOY là đường phân giác của góc xOY, nên số đo góc TOY = 0.5 * số đo góc xOY. - Để tính số đo góc TOZ, ta biết rằng TO là đường phân giác của góc xOY, nên số đo góc TOZ = 0.5 * số đo góc xOY. Mong rằng câu trả lời này đã giúp bạn hiểu và thực hiện được yêu cầu vẽ và tính toán
a) Góc đối đỉnh của \(\widehat {yOv}\) là \(\widehat {zOu}\) vì tia Oz đối tia Oy, Ou đối tia Ov
b) Ta có: \(\widehat {uOz} = \widehat {yOv}\) ( 2 góc đối đỉnh), mà \(\widehat {yOv} = 110^\circ \) nên \(\widehat {uOz} = 110^\circ \)
a) Các góc kề với \(\widehat {tOz}\)là: \(\widehat {zOy},\widehat {zOn},\widehat {zOm}\)
b) Ta có: \(\widehat {mOn}\) = 30\(^\circ \) nên góc kề bù với \(\widehat {mOn}\) có số đo là: 180\(^\circ \) - 30\(^\circ \) = 150\(^\circ \)
c) Ta có:
\(\begin{array}{l}\widehat {mOn} + \widehat {nOy} + \widehat {yOt} = 180^\circ \\ \Rightarrow 30^\circ + \widehat {nOy} + 90^\circ = 180^\circ \\ \Rightarrow \widehat {nOy} = 180^\circ - 30^\circ - 90^\circ = 60^\circ \end{array}\)
Vậy \(\widehat {nOy} = 60^\circ \)
d) Ta có: \(\widehat {tOz} = 45^\circ \) nên góc kề bù với \(\widehat {tOz}\) có số đo là: 180\(^\circ \) - 45\(^\circ \) = 135\(^\circ \)