Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Qủa cầu ném lên , khi đi xuống qua vị trí ném sẽ có vận tốc như lúc ném nhưng chiều hướng xuống. Vậy 2 quả cầu có cùng vận tốc đầu, chuyển động cùng gia tốc và đi cùng khoảng đường nên gia tốc chạm đất là như nhau.
Đáp án C.
Qủa cầu ném lên , khi đi xuống qua vị trí ném sẽ có vận tốc như lúc ném nhưng chiều hướng xuống. Vậy 2 quả cầu có cùng vận tốc đầu, chuyển động cùng gia tốc và đi cùng khoảng đường nên gia tốc chạm đất là như nhau.
Chọn gốc toạ độ O ở đỉnh tháp, trục toạ độ ox theo hướng v0 trục oy thẳng đứng xuống dưới.
Gốc thời gian là lúc ném vật.
Theo phương ox: Vật chuyển động thẳng đều với vận tốc vx = v0; x0 = 0
Theo phương oy: vật chuyển động nhanh dần đều với vận tốc đầu v0y = 0 ; y0 = 0
a. Phương trình toạ độ của quả cầu:
=> x = v0t => x = 20t (a)
=> y = 1/2 gt2 => y = 5t2 (b)
Lúc t = 2s => x = 40m => y = 60m
b. Phương trình quỹ đạo của quả cầu:
Từ (a) => t = x/20 thế vào (b) ta có :
\(y=5\left(\frac{x}{20}\right)^2=\frac{1}{80}x^2\left(m\right)\) (\(x\ge0\))
=> Quỹ đạo là đường Parabol, đỉnh O
c.Khi quả cầu chạm đất thì y = 80 m
Ta có y = 1/80 x2 = 80 => x = 80 m
Quả cầu chạm đất tại nơi cách chân tháp 80 m
Vận tốc quả cầu: \(v=\sqrt{v^2_x+v_y^2}=\sqrt{v_0^2+\left(gt\right)^2}\)
Thời gian để quả cầu chạm đất
\(t=\frac{2y}{9}=4s\)
Vậy : v = \(\sqrt{20^2+\left(10.4\right)^2}\approx44,7\) m/s
Chọn hệ quy chiếu với gốc tọa độ là vị trí ban đầu, trục Oy hướng xuống dưới, trục Ox trùng hướng với vecto vận tốc ban đầu. Gốc thời gian tại lúc ném
Thời gian quả cầu rơi là:
$t = \sqrt{\dfrac{2H}{g}} = \sqrt{\dfrac{2.80}{10}} = 4 (s)$
Vận tốc của quả cầu lúc chạm đất là:
$v = \sqrt{v_0^2 + 2gH} = \sqrt{20^2 + 2.10.80} = 20\sqrt{5} (m/s)$.
Chọn C.
Vì thời gian rơi của vật ném ngang và vật rơi tự do từ cùng một độ cao là như nhau. Đồng thời thời gian rơi tự do không phụ thuộc khối lượng của vật.
Chọn chiều chuyển động ban đầu của quả cầu A là chiều dương. Hệ vật gồm hai quả cầu A và B. Gọi v 1 , v 2 và v ' 1 , v ' 2 là vận tốc của hai quả cầu trước và sau khi va chạm.
Vì hệ vật chuyển động không ma sát và ngoại lực tác dụng lên hệ vật (gồm trọng lực và phản lực của máng ngang) đều cân bằng nhau theo phương thẳng đứng, nên tổng động lượng của hệ vật theo phương ngang được bảo toàn (viết theo trị đại số):
m 1 v ' 1 + m 2 v ' 2 = m 1 v 1 + m 2 v 2
2. v ' 1 + 3. v ' 2 = 2.3 +3.1 = 9
Hay v ' 1 + 1,5. v ' 2 = 4,5 ⇒ v ' 2 = 3 - 2 v ' 1 /3 (1)
Đồng thời, tổng động năng của hệ vật cũng bảo toàn, nên ta có:
m1 v ' 1 2 /2 + m2 v ' 2 2 /2 = m1 v 1 2 /2 + m2 v 2 2 /2
2 v ' 1 2 /2 + 3 v ' 2 2 /2 = 2. 3 2 /2 + 3. 1 2 /2
Hay v ' 1 2 + 1,5 v ' 2 2 = 10,5 ⇒ v ' 2 2 = 7 - 2 v ' 1 2 /3 (2)
Giải hệ phương trình (1), (2), ta tìm được: v ' 1 = 0,6 m/s; v ' 2 = 2,6 m/s
(Chú ý: Loại bỏ cặp nghiệm v ' 1 = 3 m/s, v ' 2 = 1 m/s, vì không thỏa mãn điều kiện v ' 2 > v 2 = 1 m/s)
Chọn C