K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Dùng để chính minh đường trung tuyến trong tam giác

2: Dùng để chứng minh trọng tâm của tam giác

3: Dùng để chứng minh ba điểm thẳng hàng

13 tháng 2 2021

1: Dùng để chính minh đường trung tuyến trong tam giác

2: Dùng để chứng minh trọng tâm của tam giác

3: Dùng để chứng minh ba điểm thẳng hàng

 chúc bạn làm tốthihi
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

19 tháng 4 2017

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB = 1212 BC

mà AM = MB nên MA =1212 BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.

19 tháng 4 2017

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB = 1212 BC

mà AM = MB nên MA =1212 BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền



5 tháng 8 2017

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB =  BC

mà AM = MB nên MA = BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.

24 tháng 5 2017

Giải bài 56 trang 80 SGK Toán 7 Tập 2 | Giải toán lớp 7

+ Giả sử ∆ABC vuông tại A.

d1 là đường trung trực cạnh AB, d2 là đường trung trực cạnh AC.

d1 cắt d2 tại M. Khi đó M là điểm cách đều ba đỉnh của tam giác ABC.

+ Áp dụng kết quả bài 55 ta có B, M, C thẳng hàng.

QUẢNG CÁO

+ M cách đều A, B, C ⇒ MB = MC ⇒ M là trung điểm của cạnh BC (đpcm)

+ M là trung điểm của cạnh BC (đpcm)

*) Giả sử AM là trung tuyến của tam giác ABC suy ra M là trung điểm của cạnh BC

⇒ MB = MC = BC/2

Mà MA = MB = MC (cmt)

⇒ MA = BC/2

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.