K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

15 tháng 8 2017

c, \(\left|4-x\right|+2x=3\)(1)

+, Xét \(x\le4\) thì \(4-x\ge0\Rightarrow\left|4-x\right|=4-x\)

Thay vào (1) ta có:

\(4-x+2x=3\)

\(\Rightarrow x=-1\)(chọn vì thoả mãn điều kiện \(x\le4;x\in Z\) )

+, Xét \(x>4\) thì \(4-x< 0\Rightarrow\left|4-x\right|=x-4\)

Thay vào (1) ta có:

\(x-4+2x=3\)

\(\Rightarrow3x=7\Rightarrow x=\dfrac{7}{3}\)(loại vì không thoả mãn điều kiện \(x\in Z\))

Vậy..........

Chúc bạn học tốt!!!

15 tháng 8 2017

a, \(\left|5x-3\right|< 2\)

\(\left|5x-3\right|\ge0\)

\(\Leftrightarrow\left|5x-3\right|\in\left\{0;1\right\}\)

+) \(\left|5x-3\right|=0\)

\(\Leftrightarrow5x-3=0\)

\(\Leftrightarrow5x=3\)

\(\Leftrightarrow x=\dfrac{3}{5}\)

+) \(\left|5x-3\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-3=1\\5x-3=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=4\\5x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{2}{5}\end{matrix}\right.\)

Vậy ................

28 tháng 6 2018

(2x + 3)2 - (5x - 4)(5x - 4) = ( x + 5)2 - (3x - 1)(7x + 2) - (x2 - 1 +1)

<=> 4x2 + 12x + 9 - ( 25x2 - 16)= x2 + 10x + 25 - (21x2 + 6x - 7x - 2) -x2

<=> 4x2 - 25x2 - x2 + 21x2 + x2 + 12x - 10x + 6x - 7x + 9 + 16 - 25 - 2 = 0

<=> x - 2 = 0

<=> x = 2

Vậy x = 2

7 tháng 8 2020

\(P\left(x\right)-Q\left(x\right)=\left(-2x+\frac{1}{2}x^2+3x^4-3x^2-3\right)-\left(3x^4+x^3-4x^2+1,5x^3-3x^4+2x+1\right)\\ P\left(x\right)-Q\left(x\right)=-2x+\frac{1}{2}x^2+3x^4-3x^2-3-3x^4-x^3+4x^2-1,5x^3+3x^4-2x-1\\ P\left(x\right)-Q\left(x\right)=\left(-2x-2x\right)+\left(\frac{1}{2}x^2-3x^2+4x^2\right)+\left(3x^4-3x^4+3x^4\right)+\left(-3-1\right)+\left(-x^3-1,5x^3\right)\\ P\left(x\right)-Q\left(x\right)=-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3\)

\(R\left(x\right)+P\left(x\right)-Q\left(x\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)+\left(P\left(x\right)-Q\left(x\right)\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\left(\frac{3}{2}x+x^2\right)+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{5}{2}x^2+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)=2x^3-\frac{3}{2}x+1+4x-\frac{5}{2}x^2-3x^4+4+\frac{5}{2}x^3\\ \Rightarrow R\left(x\right)=\left(2x^3+\frac{5}{2}x^3\right)+\left(\frac{-3}{2}x+4x\right)+\left(1+4\right)-\frac{5}{2}x^2-3x^4\\ \Rightarrow R\left(x\right)=\frac{9}{2}x^3+\frac{5}{2}x+5-\frac{5}{2}x^2-3x^4\)

20 tháng 2 2020

a) M(x) = A(x) - 2B(x) + C(x)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2(x5 - 2x4 + x2 - 5x + 3) + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2x5 - 4x4 - 2x2 + 10x - 6 + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)

\(\Leftrightarrow\)M(x) = (2x5 - 2x5) + (-4x3 + 4x3) + (x2 - 2x2 + 3x2) + (-2x + 10x - 8x) + (2 - 6 + \(4\frac{3}{16}\))

\(\Leftrightarrow\)M(x) = 2x2 + \(\frac{3}{16}\)

b) Thay \(x=-\sqrt{0,25}\)vào M(x), ta được:

\(M\left(x\right)=2\left(-\sqrt{0,25}\right)^2+\frac{3}{16}\)

\(M\left(x\right)=2.0,25+\frac{3}{16}\)

\(M\left(x\right)=0,5+\frac{3}{16}\)

\(M\left(x\right)=\frac{11}{16}\)

c) Ta có : \(x^2\ge0\)

\(\Leftrightarrow2x^2+\frac{3}{16}\ge\frac{3}{16}\)

Vậy để \(M\left(x\right)=0\Leftrightarrow x\in\varnothing\)

4 tháng 4 2017

a)\(A\left(x\right)=x^4+4x^3+2x^2+x-7\)

\(B\left(x\right)=2x^4-4x^3-2x^2-5x+3\)

b) \(f\left(x\right)=A\left(x\right)+B\left(x\right)=x^4+4x^3+2x^2+x-7+2x^4-4x^3-2x^2-5x+3=3x^4-4x-4\)

\(g\left(x\right)=A\left(x\right)-B\left(x\right)=x^4+4x^3+2x^2+x-7-2x^4+4x^3+2x^2+5x-3=-x^4+8x^3+4x^2+6x-10\)c)\(g\left(0\right)=-0^4+8.0^3+4.0^2+6.0-10=-10\)

\(g\left(-2\right)=\left(-2\right)^4+8.\left(-2\right)^3+4.\left(-2\right)^2+6.\left(-2\right)-10=16-64+16-12-10=-54\)

5 tháng 11 2017

a) \(\left|5x-4\right|=\left|x+2\right|\\ \Rightarrow\left[{}\begin{matrix}5x-4=x+2\\5x-4=-\left(x+2\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}5x-x=2+4\\5x+x=-2+4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}4x=6\\6x=2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

5 tháng 11 2017

Câu b bạn cũng giải tương tự như câu a. Câu c sẽ có biến đổi ban đầu một chút, phần sau cũng giống câu a và b nên bạn tự làm sẽ tốt hơn đó!!!vui

c)\(\left|2x-3\right|-\left|3x+2\right|=0\\ \Rightarrow\left|2x-3\right|=\left|3x+2\right|\)

Thế là được bạn nhé! Chúc bạn học giỏi!ok