\(Q=\dfrac{x-3}{x+1}\)

`1)` Tìm `x` để `Q=-x`

`2)` Tìm `x` để `Q<1`

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2023

1) \(Q=-x\) khi:

\(\dfrac{x-3}{x+1}=-x\)

\(\Leftrightarrow x-3=-x\left(x+1\right)\)

\(\Leftrightarrow x-3=-x^2-x\)

\(\Leftrightarrow x-3+x^2+x\)

\(\Leftrightarrow x^2+2x-3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

2) \(Q< 1\) khi:

\(\dfrac{x-3}{x+1}< 1\)

\(\Leftrightarrow x-3< x+1\)

\(\Leftrightarrow x-x< 1+3\)

\(\Leftrightarrow0< 4\) (luôn đúng) 

Vậy \(Q< 0\) với mọi x 

3) \(Q=m\) khi:

\(\dfrac{x-3}{x+1}=m\)

\(\Leftrightarrow x-3=m\left(x+1\right)\)

\(\Leftrightarrow x-3=mx+m\)

\(\Leftrightarrow x-mx=m+3\)

\(\Leftrightarrow x\left(1-m\right)=m+3\)

\(\Leftrightarrow1-m\ne0\)

\(\Leftrightarrow m\ne1\)

3 tháng 4 2021

a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)

\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)

\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)

b, Ta có : \(\left(x+5\right)^2-9x-45=0\)

\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)

TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)

c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)

\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x - 21-13-3
x315-1
3 tháng 4 2021

d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)

\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )

e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)

TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )

TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)

25 tháng 6 2017

\(1.=5^x\left(1+5^2\right)=5^x.26=3250\)

\(< =>5^x=125=>x=3\)

2. Để P có giá trị lớn nhất thì -/x-3/ có giá trị bé nhất...

=> x-3 có bé nhất hay x=3;

=>ĐPCM

1 tháng 4 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm3\\1-\frac{1}{x+3}\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne\pm3\\x\ne-2\end{cases}}}\)

a ) \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)

\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{x-4}{x-3}-\frac{x-1}{x+3}\right):\left(1-\frac{1}{x+3}\right)\)

\(=\frac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}:\frac{x+3-1}{x+3}\)

\(=\frac{21+x^2-x-12-\left(x^2-4x+3\right)}{\left(x-3\right)\left(x+3\right)}:\frac{x+2}{x+3}\)

\(=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}\)

\(=\frac{3.\left(x+2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}\)

\(=\frac{3}{x-3}\) 

b ) \(B=-\frac{3}{5}\Leftrightarrow\frac{3}{x-3}=-\frac{3}{5}\)

\(\Leftrightarrow x-3=-5\Leftrightarrow x=-2\) ( do \(x\ne\pm3;x\ne-2\) ) 

c ) \(B< 0\Leftrightarrow\frac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow\) \(\hept{\begin{cases}x< 3\\x\ne-2\\x\ne-3\end{cases}}\)

a: \(B=\left(\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{x^2-x-12}{\left(x-3\right)\left(x+3\right)}-\dfrac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x+3-1}{x+3}\)

\(=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+2}{x+3}\)

\(=\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)

b: Ta có: |2x+1|=5

=>2x+1=5 hoặc 2x+1=-5

=>2x=4 hoặc 2x=-6

=>x=2

Thay x=2 vào B, ta được:

\(B=\dfrac{3}{2-3}=\dfrac{3}{-1}=-3\)

d: Để B<0 thì x-3<0

hay x<3

 

12 tháng 6 2018

a) Đk \(x\ne\pm1\), sau khi rút gọn ta được: (bạn tư làm)

   \(P=\frac{x}{x+1}\)

b) Khi \(\left|x-\frac{2}{3}\right|=\frac{1}{3}\) thì hoặc \(x-\frac{2}{3}=\frac{1}{3}\) hoặc \(x-\frac{2}{3}=-\frac{1}{3}\)

Hay là \(x=1\) hoặc \(x=\frac{1}{3}\)

Do để P có nghĩa thì \(x\ne\pm1\) nên \(x=\frac{1}{3}\), khi đó: 

 \(P=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4}\)

c) P > 1 khi \(\frac{x}{x+1}>1\)

   \(\Leftrightarrow1-\frac{1}{x+1}>1\)

   \(\Leftrightarrow\frac{1}{x+1}< 0\)

   \(\Leftrightarrow x< -1\)

e) Đề không rõ ràng

1 tháng 5 2021

dễ mà ko bt lm à

5 tháng 8 2017

a)\(M=\left(\frac{x^3+1}{x+1}-x\right):\left(1-\frac{1}{x}\right)\left(ĐKXĐ:x\ne-1;0\right)\)

   \(M=\left[\frac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}-x\right]:\left(\frac{x-1}{x}\right)\)

   \(M=\left(x^2-x+1-x\right).\frac{x}{x-1}\)

    \(M=\left(x-1\right)^2.\frac{x}{x-1}\)

    \(M=x\left(x-1\right)\)

b)Ta có:\(\left|A\right|-A=0\)

          \(\Leftrightarrow\left|x\left(x-1\right)\right|-x\left(x-1\right)=0\)

           \(\Leftrightarrow\left|x^2-x\right|-x^2+x=0\)

\(TH1:x^2-x-x^2+x=0\)

           \(\Leftrightarrow0x=0\)

              \(\Rightarrow x\)vô số nghiệm

\(TH2:-\left(x^2-x\right)-x^2+x=0\)

             \(\Leftrightarrow x-x^2-x^2+x=0\)

               \(\Leftrightarrow2x=0\)

                     \(\Rightarrow x=0\)

5 tháng 8 2017

c)Để M < \(-\frac{1}{2}\) ta có:

        \(x\left(x-1\right)< -\frac{1}{2}\)

           \(\Leftrightarrow x^2-x< -\frac{1}{2}\)

             \(\Leftrightarrow x^2-x+\frac{1}{2}< 0\)

            \(\Leftrightarrow x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{1}{4}< 0\)

             \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{1}{4}< 0\)

     Vậy ko có x nào TM để A < -1/2