Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 13 giao thừa = 1.2.3.4.5.6.7.8.9.10.11.12.13 chia hết cho 2
Có 11 giao thừa = 1.2.3.4.5.6.7.8.9.10.11 chia hết cho 2
suy ra 13 giao thừa - 11 giao thừa chia hết cho 2
xin các bạn k cho mình nhé
2 câu đều có câu trả lời là 'Có'.Muốn chứng minh 2 tính chất thì dễ lắm :
- Tính chất 1 : a,b đều chia hết cho m thì a + b ; a - b cũng chia hết cho m (\(a,b\in N;a\ge b;m\in N;m>1\))
Đặt a = m.n ; b = m.q (\(n,q\in\)N*) theo định nghĩa chia hết.Lúc đó :
a + b = m.n + m.q = m.(n + q) mà \(n+q\in\)N* (do\(n,q\in\)N*) => a + b chia hết cho m.Tương tự với a - b
- Tính chất 2 : a chia hết cho m,b ko chia hết cho m thì a + b ko chia hết cho m (\(a,b,m\in N;m>1\))
Đặt a = m.n ; b = m.q + r (\(n,q,r\in\) N*\(;r\le m\)).Lúc đó :
a + b = m.n + m.q + r = m.(n + q) + r => a + b ko chia hết cho m (chia có dư ; dư r).
tổng 5 chữ sô chữ nhiên liên tiếp vẫn chia hết cho 5 sao mà chứng minh được \(VD:1+2+3+4+5=15⋮5\)
Gọi 3 số tự nhiên liên tiếp là a , b , c
a = x . 3
b = x . 3 + 1
c = x . 3 + 2
Tổng của chúng là x . 3 + x . 3 + 1 + x . 3 + 2 = x . 3 . 3 + 1 + 2 = x . 3 . 3 + 3 = x . 9 + 3
Các số hạng của tổng đều chia hết cho 3
=> x . 9 + 3 chia hết cho 3 <=> tổng của 3 số tự nhiên liên tiếp chia hết cho 3
b ) Tương tự câu đầu