Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
` @ \color{Red}{m}`
` \color{lightblue}{Answer}`
\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x}{x+1}\)
__
\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\\ =\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2x-6}{2x\left(x+3\right)}\\ =\dfrac{3x-\left(2x-6\right)}{2x\left(x+3\right)}\\ =\dfrac{3x-2x+6}{2x\left(x+3\right)}\\ =\dfrac{x+6}{2x\left(x+3\right)}\)
__
\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\\ =\dfrac{1}{1-x}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{1-x}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x-2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1}{1+x}\)
\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\left(dkxd:x\ne\pm1\right)\)
\(=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x}{x+1}\)
========================
\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\left(dkxd:x\ne\pm3;x\ne0\right)\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\)
\(=\dfrac{3x-2\left(x-3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{3x-2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{x+6}{2x^2+6x}\)
==========================
\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\left(dkxd:x\ne\pm1\right)\)
\(=-\dfrac{1}{x-1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-\left(x+1\right)+2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x-1+2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{x+1}\)
a)
\(DKXD:\left[{}\begin{matrix}x^2+x\ne0\\x\ne0\\x+1\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
b)
\(\left(\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\right)\cdot\dfrac{x+1}{3}\)
\(=\left(\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\right)\cdot\dfrac{x+1}{3}\)
\(=\left(\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}+\dfrac{3x}{x\left(x+1\right)}\right)\cdot\dfrac{x+1}{3}\)
\(=\left(\dfrac{2x^2-1-x^2+1+3x}{x\left(x+1\right)}\right)\cdot\dfrac{x+1}{3}\)
\(=\dfrac{x^2+3x}{x\left(x+1\right)}\cdot\dfrac{x+1}{3}\\ =\dfrac{x\left(x+3\right)\cdot\left(x+1\right)}{x\left(x+1\right)\cdot3}\\ =\dfrac{x+3}{3}\)
ĐKXĐ: \(x\notin\left\{1;\dfrac{1}{2}\right\}\)
\(\left(\dfrac{1}{x-1}+2+\dfrac{2x^3+x^2-x}{1-x^3}\right):\dfrac{1-2x}{x^3+x-2}\)
\(=\left(\dfrac{1}{x-1}+2-\dfrac{2x^3+x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^3+x-2}{1-2x}\)
\(=\dfrac{x^2+x+1+2\left(x^3-1\right)-2x^3-x^2+x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^3-x^2+x^2-x+2x-2}{-\left(2x-1\right)}\)
\(=\dfrac{2x+1+2x^3-2-2x^3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x^2+x+2\right)}{-\left(2x-1\right)}\)
\(=\dfrac{2x-1}{x^2+x+1}\cdot\dfrac{-\left(x^2+x+2\right)}{2x-1}=\dfrac{-x^2-x-2}{x^2+x+1}\)
a) Ta có: \(\left(x-\dfrac{1}{1-x}\right):\dfrac{x^2-x+1}{x^2-2x+1}\)
\(=\left(x+\dfrac{1}{x-1}\right):\dfrac{x^2-x+1}{\left(x-1\right)^2}\)
\(=\dfrac{x^2-x+1}{x-1}\cdot\dfrac{\left(x-1\right)^2}{x^2-x+1}\)
\(=x-1\)
b) Ta có: \(\left(1+\dfrac{x}{y}+\dfrac{x^2}{y^2}\right)\left(1-\dfrac{x}{y}\right)\cdot\dfrac{y^2}{x^3-y^3}\)
\(=\left(\dfrac{y^2}{y^2}+\dfrac{xy}{y^2}+\dfrac{x^2}{y^2}\right)\cdot\left(\dfrac{y-x}{y}\right)\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2}{y^2}\cdot\dfrac{-\left(x-y\right)}{y}\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{-1}{y}\)
\(A=\left(\dfrac{x-1}{x\left(x-2\right)}+\dfrac{x+1}{x\left(x+2\right)}-\dfrac{4}{x\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)
\(=\dfrac{x^2+x-2+x^2-x+2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)
\(=\dfrac{2x^2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)
\(=\dfrac{2x\left(x^2-2\right)\left(x-3\right)}{2x\left(x-2\right)\cdot\left(x+2\right)^2}=\dfrac{\left(x^2-2\right)\left(x-3\right)}{\left(x-2\right)\left(x+2\right)^2}\)
a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)
\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)
\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)
a: \(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^2-1}{2x+1}\)
\(=\dfrac{2}{2x+1}\)
b: Để \(P=\dfrac{3}{x-1}\) thì \(\dfrac{3}{x-1}=\dfrac{2}{2x+1}\)
=>6x+3=2x-2
=>4x=-5
hay x=-5/4
\(A=\dfrac{3x}{x-1}+\dfrac{2}{x+1}+\dfrac{3-3x-2x^2}{x^2-1}.\) \(\left(ĐKXĐ:x\ne1;x\ne-1\right).\)
\(A=\dfrac{3x\left(x+1\right)+2\left(x-1\right)+3-3x-2x^2}{\left(x-1\right)\left(x+1\right)}.\)
\(A=\dfrac{3x^2+3x+2x-2+3-3x-2x^2}{\left(x-1\right)\left(x+1\right)}.\)
\(A=\dfrac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}.\)
a: \(=\dfrac{x^4+15x+7}{x^4+15x+7}\cdot\dfrac{x}{14x^2+1}\cdot\dfrac{4x^3+4}{2x^3+2}=\dfrac{2x}{14x^2+1}\)
b: \(=\dfrac{x^7+3x^2+2}{x^7+3x^2+2}\cdot\dfrac{x^2+x+1}{x^3-1}\cdot\dfrac{3x}{x+1}\)
\(=\dfrac{1}{x-1}\cdot\dfrac{3x}{x+1}=\dfrac{3x}{x^2-1}\)
Sửa đề:
\(Q=1+\left(\dfrac{x+1}{x^3+1}-\dfrac{1}{x^2-x+1}-\dfrac{2}{x+1}\right):\dfrac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left(\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(=1+\dfrac{x+1-x-1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(=1+\dfrac{-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x\left(x-2\right)}{x^2-x+1}\)
\(=1+\dfrac{-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\dfrac{-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-2x\right)}=\dfrac{\left(x+1\right)\left(x^2-2x\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-2x\right)}\)
\(=\dfrac{x^3-2x^2+x^2-2x-2x^2+2x-2}{\left(x+1\right)\left(x^2-2x\right)}\)
\(=\dfrac{x^3-3x^2-2}{\left(x+1\right)\left(x^2-2x\right)}\)