K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

a. -\(-16x^2+8xy-y^2+49\)

\(\left(-\left(4x\right)^2+8xy-y^2\right)+49\)

\(-\left(\left(4x^2\right)-8xy+y^2\right)+49\)

\(-\left(4x-y\right)^2+49\)

b. \(y^2\left(x^2+y\right)-zx^2-zy\)

\(y^2\left(x^2+y\right)-z\left(x^2+y\right)\)

\(\left(x^2+y\right)\left(y^2-z\right)\)

13 tháng 10 2017

_16x2+8xy_y2+49

=( _(4x)2+2 × 4 × xy _ y2 )+ 72

= _((4x)2_ 2×4×x × xy +y2)+72

_(4x_y)2+72

=72_(4x_y)2

= (7_(4x_y))×(7+(4x_y))

= (7_4x+y)×(7+4x_y)

2)y2×(x2+y)_zx2_zy

=y×(x2+y)_z(x2+y)

= ( x2+y)×(y_z)

19 tháng 7 2018

Bài này dùng cách đặt ẩn phụ. Nhiều bài lớp 8 phải làm vậy. Mong bạn hiểu được cách giải.

Đặt x^2 +y^2 +z^2 =a , xy+yz+zx =b

Ta có: (x^2 +y^2 +z^2)(x+y+z)^2 +(xy+yz+zx)^2

= a (x^2 +y^2 +z^2 +2xy +2yz +2xz) +b^2

= a (a+2b)+ b^2

= a^2 + 2ab+ b^2

= (a+b)^2

= (x^2 +y^2 +z^2 +xy+yz+zx)^2

Chúc bạn học tốt.

11 tháng 8 2018

Đặt \(x^2+y^2+z^2=a\)   và  \(xy+yz+zx=b\)

=>Đa thức trên trở thành:

\(a\left(x+y+z\right)^2+b^2\)

\(=a\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+b^2\)

\(=a\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]+b^2\)

\(=a\left(a+2b\right)+b^2\)

\(=a^2+2ab+b^2\)

\(=\left(a+b\right)^2\)   (1)

Thay \(x^2+y^2+z^2=a\) và \(xy+yz+zx=b\)  vào (1),ta đc:

\(=\left(x^2+y^2+z^2+xy+zy+zx\right)^2\)

=.= hok tốt!!

19 tháng 8 2020

Bài làm:

a) \(x^2-2xy+y^2-zx+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(\left(x-y\right)\left(x-y-z\right)\)

19 tháng 8 2020

a/ \(x^2-2xy+y^2-zx+yz.\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c/ \(x^2-y^2-2x-2y.\)

\(=x^2-2x+1-y^2-2y-1\)

\(=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)

\(=\left(x-1\right)^2-\left(y+1\right)^2\)

\(=\left(x-1+y+1\right)\left(x-1-y-1\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

2 tháng 7 2018

a,\(x^2y^2+y^3+zx^2+yz=\left(x^2y^2+y^3\right)+\left(zx^2+yz\right)\)

\(=y^2\left(x^2+y\right)+z\left(x^2+y\right)\)

\(=\left(y^2+z\right)\left(x^2+y\right)\)

b,\(x^4+2x^3-4x-4=x^4+2x^3+x^2-x^2-4x-4\)

\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

c,\(x^3+2x^2y-x-2y=\left(x^3+2x^2y\right)-\left(x+2y\right)\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x^2-1\right)\left(x+2y\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+2y\right)\)

29 tháng 10 2018

\(x^5+x^4+1\)

\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

13 tháng 6 2015

a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)

b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)

đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha

c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)

d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.

có gì liên hệ chị. đúng nha ;)