Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Do \(\cos x+2>0\forall x\in R\) \(\Rightarrow\) Hàm số xác định \(\forall x\in R\)
\(y=\dfrac{\sin x+1}{\cos x+2}\)
\(\Leftrightarrow\)\(y\cos x-\sin x=1-2y\)
pt có nghiệm \(\Leftrightarrow y^2+\left(-1\right)^2\ge\left(1-2y\right)^2\)
\(\Leftrightarrow3y^2-4y\le0\)
\(\Leftrightarrow0\le y\le\dfrac{4}{3}\)
2. \(y=\dfrac{\cos x+2\sin x+3}{2\cos x-\sin x+4}\)
\(\Leftrightarrow\left(2y-1\right)\cos x-\left(y+2\right)\sin x=3-4y\)
pt có nghiệm \(\Leftrightarrow\left(2y-1\right)^2+\left(y+2\right)^2\ge\left(3-4y\right)^2\)
\(\Leftrightarrow11y^2-24y+4\le0\)
\(\Leftrightarrow\dfrac{2}{11}\le y\le2\)
kiểm tra giúp mình xem có sai sót gì không...
1.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
Pt trở thành:
\(t^3+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow2t^3+t^2-3=0\)
\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{1-t^2}{2}\end{matrix}\right.\)
Pt trở thành:
\(t^3=1+\frac{1-t^2}{2}\)
\(\Leftrightarrow2t^3+t^2-3=0\)
\(\Leftrightarrow\left(t-1\right)\left(2t^2+3t+3\right)=0\)
\(\Leftrightarrow t=1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
a) để hàm số : \(y=\dfrac{1-cosx}{sin2x}\) có nghĩa \(\Leftrightarrow sin2x\ne0\Leftrightarrow2x\ne k\pi\)
\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\left(k\in Z\right)\)
vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{k\pi}{2}\backslash k\in Z\right\}\)
b) để hàm số : \(y=\dfrac{tanx}{cosx+1}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\cosx\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k2\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)
vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi;\pi+k2\pi\backslash k\in Z\right\}\)
b) để hàm số : \(y=\dfrac{1}{sinx}+\dfrac{1}{cosx}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
vậy tập xác định của hàm số trên là : \(D=R/\left\{k\pi;\dfrac{\pi}{2}+k\pi\backslash k\in Z\right\}\)
b) để hàm số : \(y=\sqrt{\dfrac{1}{1-sinx}}\) có nghĩa \(\Leftrightarrow1-sinx>0\)
ta có : \(sinx\le1\forall x\Rightarrow1-sinx\ge0\forall x\) \(\Rightarrow\) hàm số xác định khi \(1-sinx\ne0\) là đủ
\(\Leftrightarrow sinx\ne1\Leftrightarrow x\ne\dfrac{\pi}{2}+k2\pi\)
vậy tập xác định của hàm số trên là : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\)
a) làm tương tự 2 bài mk đã giải nha.
b) \(y=2\cos^2x-2\sqrt{3}\sin x\cos x+1\)
\(=1-\left(\cos2x+\sqrt{3}\sin2x\right)\)
Lại có \(-2\le\cos2x+\sqrt{3}\sin2x\le2\) \(\Rightarrow-1\le y\le3\)
c) Vì \(\left\{{}\begin{matrix}0\le\sqrt[4]{\sin x}\le1\\0\le\sqrt{\cos x}\le1\end{matrix}\right.\)
Do đó \(-1\le y\le1\)
Đặt \(\sqrt{3}\sin x+\cos x=a\)
Theo đề, ta có: \(a=3+\dfrac{1}{a+1}=\dfrac{3a+3+1}{a+1}=\dfrac{3a+4}{a+1}\)
\(\Leftrightarrow a^2+a-3a-4=0\)
\(\Leftrightarrow a^2-2a-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1+\sqrt{5}\\a=1-\sqrt{5}\end{matrix}\right.\)
TH1: \(a=1+\sqrt{5}\)
\(\Leftrightarrow\sqrt{3}\sin x+\cos x=\sqrt{5}+1\)(1)
Vì \(3+1=4< 6+2\sqrt{5}\)
nên (1) vô nghiệm
TH2: \(a=1-\sqrt{5}\)
\(\Leftrightarrow\sqrt{3}\sin x+1\cos x=1-\sqrt{5}\)
\(\Leftrightarrow\sin\left(x+\dfrac{\Pi}{6}\right)=\dfrac{1-\sqrt{5}}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{\Pi}{6}=arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\Pi\\x+\dfrac{\Pi}{6}=\Pi-arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\Pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\Pi-\dfrac{\Pi}{6}\\x=-arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)
1.
\(\Leftrightarrow4sinx.cosx+3\left(sinx-cosx\right)=0\)
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(2\left(1-t^2\right)+3t=0\)
\(\Leftrightarrow-2t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=2\left(l\right)\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow sinx-cosx=-\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{1}{2\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\\x=\frac{5\pi}{4}-arcsin\left(-\frac{1}{2\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
2.
Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sin2x=2sinx.cosx=1-t^2\end{matrix}\right.\)
Pt trở thành:
\(1-t^2-4t=4\)
\(\Leftrightarrow t^2+4t+3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow sinx-cosx=-1\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{3\pi}{2}+k2\pi\end{matrix}\right.\)
Đây nè:
Câu hỏi của Julian Edward - Toán lớp 11 | Học trực tuyến
Câu hỏi của Julian Edward - Toán lớp 11 | Học trực tuyến
d/
Đặt \(sinx-cosx=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\) \(\Rightarrow\left|t\right|\le\sqrt{2}\)
\(t^2=1-2sinx.cosx\Rightarrow sinx.cosx=\frac{1-t^2}{2}\)
Pt trở thành:
\(6t-1=\frac{1-t^2}{2}\)
\(\Leftrightarrow t^2+12t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{39}-6\\t=-\sqrt{39}-6< -\sqrt{2}\left(l\right)\end{matrix}\right.\) (ủa giáo viên ra đề ngẫu nhiên à?)
\(\Rightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{39}-6}{\sqrt{2}}\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=arcsin\left(\frac{\sqrt{39}-6}{\sqrt{2}}\right)+k2\pi\\x-\frac{\pi}{4}=\pi-arcsin\left(\frac{\sqrt{39}-6}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
\(\Rightarrow4y+y.sinx-y.cosx=sinx+cosx\)
\(\Leftrightarrow\left(1-y\right)sinx+\left(1+y\right)cosx=4y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(1-y\right)^2+\left(1+y\right)^2\ge\left(4y\right)^2\)
\(\Leftrightarrow14y^2\le2\)
\(\Leftrightarrow-\dfrac{\sqrt{7}}{7}\le y\le\dfrac{\sqrt{7}}{7}\)
tìm min, max