Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Trừ vế theo vế hai phương trình ta được
\(x^2+6y-y^2-6x=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=6-y\end{matrix}\right.\)
Nếu \(x=y,pt\left(1\right)\Leftrightarrow x^2+x=5x+3\)
\(\Leftrightarrow x^2-4x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=2+\sqrt{7}\\x=y=2-\sqrt{7}\end{matrix}\right.\)
Nếu \(x=6-y,pt\left(2\right)\Leftrightarrow y^2+6-y=5y+3\)
\(\Leftrightarrow y^2-6y+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=3+\sqrt{6}\\y=3-\sqrt{6}\end{matrix}\right.\)
\(y=3+\sqrt{6}\Rightarrow x=3-\sqrt{6}\)
\(y=3-\sqrt{6}\Rightarrow x=3+\sqrt{6}\)
b, Trừ vế theo vế hai phương trình
\(3x^3-3y^3=y^2-x^2\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2+xy+y^2+x+y\right)=0\)
Từ \(pt\left(1\right)\) \(3x^3=y^2+2>0\Rightarrow x>0\)
Tương tự \(y>0\)
\(\Rightarrow x^2+xy+y^2+x+y>0,\forall x;y\)
\(\Rightarrow x=y\)
\(pt\left(1\right)\Leftrightarrow3x^3=x^2+2\)
\(\Leftrightarrow3x^3-x^2-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x^2+2x+2\right)=0\)
\(\Leftrightarrow x=y=1\left(\text{vì }3x^2+2x+2=2x^2+\left(x+1\right)^2+1>0\right)\)
Bài 1:
a) \(5x-15y=5\left(x-3y\right)\)
b) \(\dfrac{3}{5}x^2+5x^4-x^2y=x^2\left(\dfrac{3}{5}+5x^2-y\right)\)
c) \(14x^2y^2-21xy^2+28x^2y=7xy\left(2xy-3y+4x\right)\)
d) \(\dfrac{2}{7}x\left(3y-1\right)-\dfrac{2}{7}y\left(3y-1\right)=\dfrac{2}{7}\left(3y-1\right)\left(x-y\right)\)
e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
f) \(\left(x+y\right)^2-4x^2=\left(-x+y\right)\left(3x+y\right)\)
g) \(27x^3+\dfrac{1}{8}=\left(3x+\dfrac{1}{2}\right)\left(6x^2+1,5x+\dfrac{1}{4}\right)\)
h) \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3=2y\left(3x^2+y\right)\)
Bài 2:
a) \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\Rightarrow x=-1\\x+2=0\Rightarrow x=-2\end{matrix}\right.\)
b) \(x\left(3x-2\right)-5\left(2-3x\right)=0\)
\(\Rightarrow x\left(3x-2\right)+5\left(3x-2\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\Rightarrow x=\dfrac{2}{3}\\x+5=0\Rightarrow x=-5\end{matrix}\right.\)
c) \(\dfrac{4}{9}-25x^2=0\)
\(\Rightarrow\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-5x=0\Rightarrow x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0\Rightarrow x=\dfrac{-2}{15}\end{matrix}\right.\)
d) Có tới 2 dấu "=".
bài 1 dễ mk ko lm nữa nhé
bafi2:
a,x(x+1)(x+2)=0
x=0 ; x=-1 ; x=-2
b,x(3x-2)+5(3x-2)=0
(x+5)(3x-2)=0
x=-5 ; x=2/3
c,
(2/3)2- (5x)2=0
(2/3-5x)(2/3+5x)=0
x=+-2/15
d, X2-2*1/2x+(1/2)2=0
(X-1/2)22=0
X=1/2
a)
\(A=3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)\(2A=\left[\left(x-y\right)-\left(x+y\right)\right]^2+5\left(x-y\right)^2-5\left(x+y\right)^2\)
\(2A=4y^2+5\left[\left(x-y\right)-\left(x+y\right)\right]\left[\left(x-y\right)+\left(x+y\right)\right]\)\(2A=4y^2+5\left[-2y\right]\left[2x\right]=4y^2-20xy=4y\left(y-5x\right)\\ \)\(A=2y\left(y-5x\right)\)
a) R\\(\left\{0;2\right\}\)
b) R\\(\frac{5}{6}\)
mấy câu còn lại hơi khó hiểu lm ơn hôm sau đăng rr