\(x^2.2y^2+z^2=18\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Theo đề bài ta có:

x:y:z=4:5:6

=> x/4=y/5=z/6

Và x^2. 2y^2+z^2=18

Theo t/c chất của dãy tỉ số bằng nhau và x^2. 2y^2+z^2=18 ta có:

x/4=y/5=z/6=x^2.2y^2+z^2=4^2.2.5^2+6^2=18/836=9/418

Vậy:

x/4=9/418=>x= 18/209

y/5=9/418=>y=45/418

z/6=9/418=>z=27/209

a)Từx:y:z=3:5:(−2)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau,ta có

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{5.3-5+3.\left(-2\right)}=-\dfrac{16}{4}=-4\)

=>x=-12

y=-20

z=8

Vậy...

Các câu sau tương tự

27 tháng 10 2016

Ta có : \(\frac{x}{5}\)= \(\frac{y}{7}\)= \(\frac{z}{8}\)= \(\frac{x+y+z}{5+7+8}\)= \(\frac{18}{20}\)= \(\frac{9}{10}\)

Vậy : x = 5 .\(\frac{9}{10}\)= 4,5

y = 7 . \(\frac{9}{10}\)= 6,3

Chúc bạn học tốt !

z = 8. \(\frac{9}{10}\)= 7,2

8 tháng 11 2018

a) Đặt x/3 = y/4 = k ta có: x = 3k và y = 4k
=> x.y = 3k.4k = 12
> 12k² = 12 => k = -1; 1
=> x = 3; y = 4 hoặc x = -3; y = -4
b) Làm tương tự
c) Từ x/2 = y/3 => x/10 = y/15 (1)
Từ y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) ta có: x/10 = y/15 = z/12
Áp dụng t/c dãy tỷ số bằng nhau ta có:
x/10 = y/15 = z/12 = (x + y - z)/(10 + 15 - 12) = 39/13 = 3
Từ x/10 = 3 => x = 30
Từ y/15 = 3 => y = 45
Từ z/12 = 3 => z = 36
d) Làm tương tự c ta có:
Từ x/3 = y/4 => x/9 = y/12 (1)
Từ y/3 = z/5 => y/12 = z/20 (2)
Từ (1) và (2) ta có: x/9 = y/12 = z/20 hay 2x/18 = 3y/36 = z/20
Áp dụng TC DTS BN ta có:
2x/18 = 3y/36 = z/20 = (2x - 3y + z )/(18 - 36 + 20) = 6/2 = 3
Từ 2x/18 = 3 => x = 27
Từ 3y/36 = 3 => y = 36
Từ x/20 = 3 => z = 60
e) Từ 2x = 3y => x/3 = y/2
Từ 5y = 7z => y/7 = z/5 (Quay về VD c,d)
f) Làm tương tự

17 tháng 9 2016

x : y : z = 3 : 4 : 5 

=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Thế vào đẳng thức , ta có : 

\(5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)

\(5.25k^2-3.9k^2-2.16k^2=594\)

\(125k^2-27k^2-32k^2=594\)

\(k^2.\left(125-27-32\right)=594\)

\(66k^2=594\)

\(k^2=9\)

\(\Rightarrow k=\hept{\begin{cases}3\\-3\end{cases}}\)

Với \(k=3\Rightarrow\hept{\begin{cases}x=3k=9\\y=4k=12\\z=5k=15\end{cases}}\)

\(k=-3\Rightarrow\hept{\begin{cases}x=3k=-9\\y=4k=-12\\z=5k=-15\end{cases}}\)

5 tháng 8 2017

Ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2=594\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)

\(\hept{\begin{cases}\frac{x^2}{3^2}=9\Rightarrow x=\sqrt{9.3^2}=9;x=-9\\\frac{y^2}{4^2}=9\Rightarrow y=\sqrt{9.4^2}=12;y=-12\\\frac{z^2}{5^2}=9\Rightarrow z=\sqrt{9.5^2}=15;z=-15\end{cases}}\)

Vậy \(x=9;y=12;z=15\)hoặc \(x=-9;y=-12;z=-15\)

17 tháng 9 2016

\(x:y:z=3:4:5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

\(\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)

\(\Rightarrow\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}=\frac{5z^2-3x^2-2y^2}{125-27-31}=\frac{594}{67}\)

Bạn tự giải tiếp .

17 tháng 9 2016

hiểu rùi...thanksleuleu

6 tháng 8 2017

2 cách nhé các bạn

25 tháng 6 2019

a) Thiếu đề

b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

 \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)

=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)

Vậy ...

25 tháng 6 2019

Sửa lại xíu :

 \(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)

\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)

31 tháng 3 2020

1, \(\frac{x}{4}\) = \(\frac{y}{2}\) = \(\frac{x+y}{4+2}\) = \(\frac{6}{6}\) = 1

=> x = 4; y = 2

2, x : y : z = 6 : 7 : 8 => \(\frac{x}{6}\) = \(\frac{y}{7}\) = \(\frac{z}{8}\)

=> \(\frac{x}{6}\) = \(\frac{y}{7}\) = \(\frac{z}{8}\) = \(\frac{x+y+z}{6+7+8}\) = \(\frac{21}{21}\) = 1

=> x = 6; y = 7; z = 8

3, 4x = 5y => \(\frac{x}{\frac{1}{4}}\) = \(\frac{y}{\frac{1}{5}}\) = \(\frac{x-y}{\frac{1}{4}-\frac{1}{5}}\) = \(\frac{1}{\frac{1}{20}}\) = 20

=> x = 5; y = 4