Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Tới đây bạn xét hai trường hợp nhé :)
(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)
=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)
=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)
Đặt: \(x-1=a;\)\(y-3=b;\)\(z-8=c\)
=> \(a+b+c=x+y+z-12=0\)(do x+y+z = 12 )
Ta dễ dàng chứng minh được:
nếu a + b + c = 0
thì: a3 + b3 + c3 = 3abc
Như vậy ta có:
\(\left(x-1\right)^3+\left(y-3\right)^3+\left(z-8\right)^3=0\)
<=> \(3\left(x-1\right)\left(y-3\right)\left(z-8\right)=0\)
đến đây bạn xử lí nốt nhé
Hình như đề bài sai đó bạn. \(x^2+y^2+z^2\)=0 nê x=y=z=0, vì sao lại có 2(x+y+z+3/2)=0 được
\(\left(x+y+z\right)^3-x^3-y^3-z^3=0\)
\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3=0\)
=>3(x+y)(y+z)(x+z)=0
=>(x+y)(y+z)(x+z)=0
\(\left(x^{11}+y^{11}\right)\left(y^7+z^7\right)\left(x^{2017}+z^{2017}\right)\)
\(=\left(x+y\right)\cdot A\cdot\left(y+z\right)\cdot B\cdot\left(x+z\right)\cdot C\)
=0
Ta có: \(x+y+z=x^3+y^3+z^3=1\)
\(\Rightarrow\left(x+y+z\right)^3=x^3+y^3+z^3=1\)
\(\Rightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(x=-z\)
Với \(x=-y\); \(x+y+z=1\Rightarrow z=1\)
\(\Rightarrow B=1\)
Với các trường hợp còn lại B vẫn bằng 1
Đáp số: B = 1
1