K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(xy^2+\frac{2}{3}y^2x-\frac{3}{4}xy^2=\left(xy^2-\frac{3}{4}xy^2\right)+\frac{2}{3}y^2x=\frac{1}{4}xy^2+\frac{2}{3}y^2x\)

2 tháng 5 2016

xy^2+2/3y^2x-3/4xy^2

=(1-3/4)xy^2+2/3y^2x

=1/4xy^2+2/3y^2x

2 tháng 5 2016

= -xy3 . 5/8x2-2x3y . 1/4x2y2
 

2 tháng 5 2016

\(\left(-xy^3\right).\frac{5}{2}x^2-2x^3y.\frac{1}{4}x^2y^2\)

=\(\left(-xy^3-2x^3y\right).\frac{1}{4}x^2y^2.\frac{5}{2}x^2\)

=\(-3xy^3.\frac{1}{4}x^2y^2.\frac{5}{2}x^2\)

6 tháng 2 2016

+12 chứ bn?

X^3+2x^2y+2x+xy^2+2y+12

=x^3+x^2y+x^2y+2x+xy^2+2y+12

=x^2.(x+y)+xy(x+y)+(2x+2y)+12

=x^2.(x+y)+xy(x+y)+2.(x+y)+12

=0+0+0+12=12

 

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\((\frac{1}{3}xy)^2.x^3+\frac{3}{2}(2x)^3(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)

\(=(\frac{1}{9}x^2y^2)x^3+\frac{3}{2}(8x^3)(-\frac{7}{4}x^2y^2)-\frac{2}{3}x^5y^2\)

\(=\frac{1}{9}(x^2.x^3)y^2+(\frac{3}{2}.8.\frac{-7}{4})(x^3.x^2).y^2-\frac{2}{3}x^5y^2\)

\(=\frac{1}{9}x^5y^2-21x^5y^2-\frac{2}{3}x^5y^2=\frac{-194}{9}x^5y^2\)

2.

\(\frac{-2}{5}x^2y(-y^6)+\frac{3}{2}xy(\frac{-1}{15}xy^6)+(-2xy)^2y^5\)

\(=\frac{2}{5}x^2(y.y^6)+(\frac{3}{2}.\frac{-1}{15})(x.x).(y.y^6)+4x^2(y^2.y^5)\)

\(=\frac{2}{5}x^2y^7-\frac{1}{10}x^2y^7+4x^2y^7=\frac{43}{10}x^2y^7\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

3.

\(\frac{3}{7}xy^2z+\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2-\frac{3}{7}xy^2z\)

\(=(\frac{3}{7}xy^2z-\frac{3}{7}xy^2z)+(\frac{1}{2}x^3y^2+\frac{1}{3}x^3y^2)\)

\(=\frac{5}{6}x^3y^2\)

4.

\(\frac{2}{3}xy^2-\frac{5}{2}yz+\frac{1}{2}xy^2-\frac{2}{3}yz\)

\(=(\frac{2}{3}xy^2+\frac{1}{2}xy^2)-(\frac{5}{2}yz+\frac{2}{3}yz)\)

\(=\frac{7}{6}xy^2+\frac{19}{6}yz\)

5.

\(\frac{3}{2}xy^2z^5-\frac{5}{4}xyz^2+\frac{4}{3}xy^2z^5+\frac{1}{2}xyz^2\)

\(=(\frac{3}{2}xy^2z^5+\frac{4}{3}xy^2z^5)+(\frac{-5}{4}xyz^2+\frac{1}{2}xyz^2)\)

\(=\frac{17}{6}xy^2z^5-\frac{3}{4}xyz^2\)

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

7 tháng 5 2019

1, \(\left(xy\right)^2-\frac{1}{2}x^2y^2+3xy^2.\left(-\frac{1}{3}x\right)\)

\(=x^2y^2-\frac{1}{2}x^2y^2-x^2y^2\)

\(=-\frac{1}{2}x^2y^2\)

2, \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

\(=x^2+\frac{3}{2}x^2+\frac{1}{3}x^2\)

\(=\frac{17}{6}x^2\)

3, \(-4.\left(2x\right)^2y^3+\frac{1}{2}xy.\left(-2xy^2\right)+\frac{1}{4}x^2y^3\)

\(=-16x^2y^3-x^2y^3+\frac{1}{4}x^2y^3\)

\(=-\frac{67}{4}x^2y^3\)

4, \(\frac{1}{3}x^4y-\frac{5}{3}x^3.\left(\frac{5}{2}xy\right)+\frac{3}{4}x^4y\)

\(=\frac{1}{3}x^4y-\frac{25}{6}x^4y+\frac{3}{5}x^4y\)

\(=-\frac{97}{30}x^4y\)

5, \(\left(-2x^3y^4\right)^2-5x^2y.\left(\frac{3}{4}x^4y^7\right)-\frac{2}{3}x^6y^8\)

\(=4x^6y^8-\frac{15}{4}x^6y^8-\frac{2}{3}x^6y^8\)

\(=-\frac{5}{12}x^6y^8\)

21 tháng 7 2016

\(x:y:z=3:4:5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)

\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)

\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)

\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)

Vậy x = 27 ; y = 36 ; z = 45

21 tháng 7 2016

\(x+y=3\left(x-y\right)\)

\(\Rightarrow x+y=3x-3y\)

\(\Rightarrow y+3y=3x-x\)

\(\Rightarrow4y=2x\)

\(\Rightarrow2y=x\)

\(\Rightarrow x:y=2\)

\(\Rightarrow x+y=2y+y=2\)

\(\Rightarrow3y=2\)

\(\Rightarrow y=\frac{2}{3}\)

\(\Rightarrow x=\frac{4}{3}\)

Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)