K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NM
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HP
11
25 tháng 11 2016
A-2=\(\left(\sqrt{x-y}-\sqrt{\frac{2}{x-y}}\right)^2+2\sqrt{2}\)
A>=2\(\left(1+\sqrt{2}\right)\)
dang thuc xay ra khi
x-y=\(\sqrt{2}\)
CC
0
LT
0
27 tháng 6 2016
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
BM
1
25 tháng 12 2019
\(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{2\left(x+y\right)^2}{4}}=4+2=6\)
Dấu "=" xảy ra tại x=y=1/2
Áp dụng 2 bất đẳng thức phụ:
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\).Dấu "=" xảy ra khi và chỉ khi \(x=y\)
\(xy\le\frac{\left(x+y\right)^2}{4}\).Dấu "=" xảy ra khi và chỉ khi \(x=y\)
Áp dụng vào bài toán,ta có:
\(x^2+y^2\ge2\)
\(xy\le1\Leftrightarrow\frac{1}{xy}\ge1\)
Khi đó,ta có:\(x^2+y^2+\frac{1}{xy}\ge3\)
Dấu "=" xảy ra khi \(x=y=1\)
Thêm 2 vào bớt 2 ra biến đổi và dùng Cô si là xong ạ? + Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}\) (cũng là hệ quả của cô si thôi)
Ta có: \(P=x^2+y^2+\frac{1}{xy}=\left(x^2+1\right)+\left(y^2+1\right)+\frac{1}{xy}-2\)
\(\ge2x+2y+\frac{1}{\frac{\left(x+y\right)^2}{4}}-2=2\left(x+y\right)+\frac{4}{\left(x+y\right)^2}-2\)
\(=2.2+\frac{4}{2^2}-2=5-2=3\)
Dấu "=" xảy ra khi x = y = 1
Vậy \(P_{min}=3\Leftrightarrow x=y=1\)