K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 8 2021

\(\left(x+y\right)^2-4\left(x+y\right)+4\)

\(=\left(x+y\right)^2-2.2.\left(x+y\right)+2^2\)

\(=\left(x+y-2\right)^2\)

1 tháng 11 2018

\(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right).\)

\(=x.\left(x^2-4^2\right)-\left(x^2-1\right)\)

\(=x^3-16x-x^2+1\)

\(=x\left(x^2-4^2-x\right)+1\)

\(\)

27 tháng 7 2021

Bài 1 : hđt bạn tự làm nhé

Bài 2 : 

\(\left(x-1\right)\left(x^2+x+1\right)-\left(x-4\right)^2x\)

\(=x^3-1-x\left(x^2-8x+16\right)=x^3-1-x^3+8x^2-16x\)

\(=8x^2-16x-1\)

\(\left(x+7\right)\left(x^2-7x+49\right)-\left(5-x\right)\left(5+x\right)\left(x-1\right)\)

\(=x^3+343-\left(25-x^2\right)\left(x-1\right)=x^3+343-\left(25x-25-x^3+x^2\right)\)

\(=x^3+343+x^3-x^2-25x+25=2x^3-x^2-25x+368\)

27 tháng 7 2021

2 câu cuối bài 1 làm sao 

mk mới học nên ko bt 

29 tháng 10 2017

Ta có :

\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=\left(2x\right)^2\)

Thay \(x=-10\) vào biểu thức vừa rút gọn ta được :

\(\left(2.-10\right)^2=400\)

29 tháng 10 2017

\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y+x-y\right)^2\)

\(=4x^2\)

Thay x=-10 vào biểu thức trên ta được:

\(4.\left(-10\right)^2=4.10^2=4.100=400\)

Vậy giá trị của biểu thức \(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\) tại x=-10 là 400

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)       

\(\begin{array}{l}{x^4} - 3{x^2}{y^2} + 3x{y^2} - {x^4} + 1\\ = \left( {{x^4} - {x^4}} \right) - 3{x^2}{y^2} + 3x{y^2} + 1\\ =  - 3{x^2}{y^2} + 3x{y^2} + 1\end{array}\) 

Bậc của đa thức là 4

b)       

\(\begin{array}{l}5{x^2}y + 8xy - 2{x^2} - 5{x^2}y + {x^2}\\ = \left( {5{x^2}y - 5{x^2}y} \right) + \left( { - 2{x^2} + {x^2}} \right) + 8xy\\ =  - {x^2} + 8xy\end{array}\)

Bậc của đa thức là 2

19 tháng 10 2023

a) \(\left(4x^4-8x^2y^2+12x^5y\right):\left(-4x^2\right)\)

\(=4x^4:-4x^2-8x^2y^2:-4x^2+12x^4y:-4x^2\)

\(=-x^2+2y^2-3x^2y\)

b) \(x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\)

\(=x^3-x^2y^2-xy+x^2y^2-x^3\)

\(=-xy\)

7 tháng 10 2023

a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\) 

b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\) 

\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)

\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)

\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)

\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)

25 tháng 6 2016

(x-y)3+(x+y)3+(y-x)3-3xy(x+y)

=x3-3x2y+3xy2-y3+x3+3x2y+3xy2+y3+y3-3y2x+3yx2-x3-3x2y-3xy2

=x3+x3-x3-3x2y+3x2y-3yx2-3x2y+3xy2+3xy2-3y2x-3xy2-y3+y3+y3

=x3+y3

2 tháng 10 2018

\(A=x^4+2x^3+5x^2+4x+4\)

\(=\left(x^2\right)^2+2.x^2.x+x^2+4\left(x^2+x\right)+4\)

\(=\left(x^2+x\right)^2+2.\left(x^2+x\right).2+2^2\)

\(=\left(x^2+x+2\right)^2\)

\(=\left(y+1\right)^2\)

Chúc bạn học tốt.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)      \(Q = 5{x^2} - 7xy + 2,5{y^2} + 2x - 8,3y + 1\) có bậc là 2.

b)       

\(\begin{array}{l}H = 4{x^5} - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} - 4{x^5} + 2{y^2} - 7\\ = \left( {4{x^5} - 4{x^5}} \right) - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\\ =  - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\end{array}\)

Đa thức H có bậc là 4.