Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
\(x^2-4xy+4y^2+y^2+2y+1-4=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\) (ktm)
\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)
\(\Rightarrow\left(x+6\right)^2+4=4\Rightarrow x=-6\)
Vậy \(\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)
( x - 2y )2 + ( y + 1 )2 = 4 mà ( x - 2y ) 2 ≥ 0 ⇒ 4 - ( y + 1 ) 2 ≥ 0 ⇔ - ( y + 3 )( y - 1 ) ≥ 0 chia TH rồi ⇒ y ≥ -3 ymin = -3 ⇒ x = -6
Giả thiết cho ta \(\left(x^2+y^2\right)^2+x^2+2y^2=3.\) Đặt \(t=x^2+y^2\) (ta có \(t\ge0\)).
Giá trị lớn nhất: Từ giả thiết ta suy ra \(t^2+t=3-y^2\le3\to\left(t+\frac{1}{2}\right)^2\le3+\frac{1}{4}\to t\le\frac{\sqrt{13}-1}{2}\)
Dấu bằng xảy ra khi và chỉ \(y=0,x=\pm\sqrt{\frac{\sqrt{13}-1}{2}}\). Vậy giá trị lớn nhất của \(B=t\) là \(\frac{\sqrt{13}-1}{2}.\)
Giá trị bé nhất: Từ giả thiết \(t^2+2t=3+x^2\ge3\to\left(t+1\right)^2\ge4\to t+1\ge2\to t\ge1.\) Dấu bằng xảy ra khi \(x=0,y=\pm1\). Vậy giá trị bé nhất của \(B=t\) là \(1.\)
bài 1 câu b dẽ nhất
x^2 =y^4 +8
x^2 -y^4 =8
x^2 -(y^2)^2 =8
hiệu hai số cp =8
=> x =+-3 và y =+-1
x+2y=3\(\Rightarrow y=\dfrac{3-x}{2}\)(1)
Thế (1) vào E ta được : E=x\(^2\)+\(\dfrac{x^2-6x+9}{2}\)
\(\Leftrightarrow2E=2x^2+x^2-6x+9\Leftrightarrow2E=3x^2-6x+9\)
\(\Leftrightarrow2E=3\left(x^2-2x+1+2\right)\Leftrightarrow E=\dfrac{3}{2}\left[\left(x-1\right)^2+2\right]\)
\(\Leftrightarrow E=\dfrac{3}{2}\left(x-1\right)^2+3\) . Do (x-1)\(^2\)\(\ge\)0\(\Rightarrow\dfrac{3}{2}\left(x-1\right)^2\ge0\)\(\Rightarrow\dfrac{3}{2}\left(x-1\right)^2+3\ge3\Leftrightarrow E\ge3\) . Hay \(E_{min}=3\) .
Vậy giá trị nhỏ nhất của E là 3 \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)