K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

Đặt a=x+y, b=xy

Ta có \(x+xy+y=5\Leftrightarrow\left(x+y\right)+xy=5\Leftrightarrow a+b=5\left(1\right)\)

\(x^2+y^2=5\Leftrightarrow\left(x+y\right)^2-2xy=5\Leftrightarrow a^2-2b=5\left(2\right)\)

Từ (1),(2) ta có hệ phương trình

\(\left\{{}\begin{matrix}a+b=5\\a^2-2b=5\left(3\right)\end{matrix}\right.\)

Ta có a+b=5\(\Leftrightarrow b=5-a\)

Thế b=5-a vào (3) ta có \(\left(3\right)\Leftrightarrow a^2-2\left(5-a\right)=5\Leftrightarrow a^2-10+2a=5\Leftrightarrow a^2+2a-15=0\Leftrightarrow a^2-3a+5a-15=0\Leftrightarrow a\left(a-3\right)+5\left(a-3\right)=0\Leftrightarrow\left(a-3\right)\left(a+5\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a-3=0\\a+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}a=3\\a=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=10\end{matrix}\right.\)

Nếu a=3 và b=2 thì \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)

Nếu a=-5 và b=10 thì \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\)(vô nghiệm)

Vậy (x;y)={(1;2);(2;1)}

5 tháng 8 2017

b) \(\left\{{}\begin{matrix}\left(x-1\right)^2-2y=2\\\left(x+1\right)^2+3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x+1\right)^2-6y=6\left(1\right)\\2\left(x-1\right)^2+6y=2\left(2\right)\end{matrix}\right.\)

Cộng theo vế 2 pt trên, ta có

\(3\left(x+1\right)^2+2\left(x-1\right)^2=8\)

\(\Leftrightarrow5x^2+2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-1\end{matrix}\right.\)

Từ đó dễ dàng tìm được y.

5 tháng 8 2017

a) \(\left\{{}\begin{matrix}\left(x+y\right)^2=50\left(1\right)\\x+5\left(y-1\right)=xy\left(2\right)\end{matrix}\right.\)

Ta viết lại pt (2)

\(x+5\left(y-1\right)=xy\)

\(\Leftrightarrow\left(x-xy\right)+5\left(y-1\right)=0\)

\(\Leftrightarrow x\left(1-y\right)-5\left(1-y\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(1-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)

- TH1: Thay x = 5 vào pt (1) tìm được \(\left[{}\begin{matrix}y=-5+5\sqrt{2}\\y=-5-5\sqrt{2}\end{matrix}\right.\)

- TH2: Thay y = 1 vào pt (1) tìm được \(\left[{}\begin{matrix}x=-1+5\sqrt{2}\\x=-1-5\sqrt{2}\end{matrix}\right.\)

7 tháng 8 2017

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

ĐK: \(x\ge0\)

\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)

7 tháng 8 2017

ai giải hộ mk ý a vs ý c

1 tháng 9 2019

 Mk nghĩ đề bài nên cho x ;y là số nguyên

Ta có:\(x^2y+xy^2+x+y+xy=11\)

\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)+xy=11\)

\(\Rightarrow\left(xy+1\right)\left(x+y\right)+\left(xy+1\right)=12\)

\(\Rightarrow\left(xy+1\right)\left(x+y\right)=12\)

Từ đây => \(\inƯ\left(12\right)\)

Làm nốt

21 tháng 7 2015

\(pt\text{ (2)}\Leftrightarrow\left(y-1\right)\left(y+x-2\right)=0\Leftrightarrow y=1\text{ hoặc }y=2-x\)

Lần lượt thay từng trường hợp vào phương trình đầu giải tiếp.

1 tháng 1 2018

Do \(x^3+y^3=1\) \(\Rightarrow x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)\)

\(\Leftrightarrow x^5+y^5=x^5+y^5+x^2y^3+x^3y^2\)

\(\Leftrightarrow x^2y^2\left(x+y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}xy=0\\x+y=0\end{matrix}\right.\)

Nếu \(x+y=0\Rightarrow x^3=-y^3\Rightarrow x^3+y^3=0\) ( mâu thuẫn)

Nếu \(xy=0\) \(\Rightarrow x^3+y^3=1\Rightarrow\left(x+y\right)^3=1\Rightarrow x+y=1\)

ta có\(\left\{{}\begin{matrix}xy=0\\x+y=1\end{matrix}\right.\) \(\Rightarrow\left(x,y\right)=\left\{\left(1,0\right);\left(0,1\right)\right\}\)

6 tháng 12 2017

\(\left\{{}\begin{matrix}x+y+xy=7\\x^3+y^3+3\left(x^2+y^2\right)+3\left(x+y\right)=70\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=8\\\left(x+1\right)^3+\left(y+1\right)^3=72\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^3\left(y+1\right)^3=512\\\left(x+1\right)^3+\left(y+1\right)^3=72\end{matrix}\right.\)

Đặt \(\left(x+1\right)^3=a;\left(y+1\right)^3=b\) Ta có hệ phương trình sau :

\(\left\{{}\begin{matrix}ab=512\\a+b=72\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=72-b\left(1\right)\\\left(72-b\right).b=512\left(2\right)\end{matrix}\right.\)

Từ (2) => \(\left[{}\begin{matrix}b=64\\b=8\end{matrix}\right.\)

- Với b=64 => a=8

=> x=1;y=3

- Với b=8=>a=64

=> x=3;y=1

Vậy nghiệm của hệ phương trình là :

(x;y)\(\in\){(1;3),(3;1)}