Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x^2\left(y+1\right)-\left(y+1\right)\)
=(y+1)(x-1)(x+1)
a)\(\frac{1}{64}x^6-125y^3=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)
b)\(x^6+1=\left(x^2\right)^3+1^3=\left(x^2+1\right)\left(x^4+x^2+1\right)\)
c)\(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
d)\(x^9+1=\left(x^3\right)^3+1=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)
\(=x^3\left(x+1\right)\left(x^2-x+1\right)\left(x^2-x+1\right)\)
a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz
= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]
= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)
= (xy + yz + zx)(x + y + z)
b) Vô câu hỏi tương tự
a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz
= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]
= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)
= (xy + yz + zx)(x + y + z)
b) tương tự
\(y\left(x+y\right)-x-y=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
y.( x + y ) - x - y
= y.( x + y ) - ( x + y )
= ( x + y ).( y - 1 )
\(a,\)
\(x^3y-y\)
\(=y\left(x^3-1\right)\)
\(=y\left[\left(x-1\right)\left(x^2+x+1\right)\right]\)
\(=y\left(x-1\right)\left(x^2+x+1\right)\)
\(b,\)
\(x^3y+y\)
\(=y\left(x^3+1\right)\)
\(=y\left[\left(x+1\right)\left(x^2-x+1\right)\right]\)
\(=y\left(x+1\right)\left(x^2-x+1\right)\)
\(c,\)
\(\left(x-y\right)^2-x\left(y-x\right)\)
\(=\left(x-y\right)^2+x\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+x\right)\)
\(=\left(x-y\right)\left(2x-y\right)\)
\(-x-y^2+x^2-y=-\left(x+y\right)-\left(x-y\right)\left(x+y\right)=\left(x+y\right)\left(-1-x+y\right)\)
\(x\left(x-y\right)+2\left(y-x\right)=x\left(x-y\right)-2\left(x-y\right)=\left(x-y\right)\left(x-2\right)\)
\(=x\left(x-y\right)-2\left(x-y\right)=\left(x-2\right)\left(x-y\right)\)
\(=\left(x+y\right)^2\left(x-y\right)+y^2\left(x-y\right)\\ =\left(x-y\right)\left[\left(x+y\right)^2+y^2\right]\\ =\left(x-y\right)\left(x^2+2xy+2y^2\right)\)
\(x\left(x+y\right)^2-y\left(x+y\right)^2+y^2\left(x-y\right)=\left(x-y\right)\left(2y^2+2xy+x^2\right)\)