Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{x-3}{x-2}+\frac{x+2}{x-4}=-1\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{x^2-7x+12+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)
.................
a) \(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\frac{2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)}{x^3-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\left(x^3-1\right)\left[2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)\right]=\left(x^3-1\right)\left(2x-1\right)\left(2x+1\right)\)
\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)=\left(2x-1\right)\left(2x+1\right)\)
\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-\left(4x^2-1\right)=0\)
\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-4x^2+1=0\)
\(\Rightarrow3x=0\)
\(\Rightarrow luon-dung-voi-moi-x\)
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:
\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)
\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)
\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)
\(\Leftrightarrow2t^2+t-1=6t^2-6t\)
\(\Leftrightarrow-4t^2+7t-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)
Vậy phương trình vô nghiệm.
\(ĐKXĐ:x\ne\pm1\)
\(pt\Leftrightarrow\frac{\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)\(=\frac{2x\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)\)\(=2x\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x+1-3x^2\right)\left(x^2+x+1\right)\)\(=2x\left(x^2-1\right)\)
\(\Leftrightarrow-3x^4-2x^3-x^2+2x+1\)\(=2x^3-2x\)
\(\Leftrightarrow-3x^4-4x^3-x^2+4x+1=0\)
a: \(\Leftrightarrow\dfrac{3}{x-2}=\dfrac{2x-1}{x-2}-\dfrac{x\left(x-2\right)}{x-2}\)
=>3=2x-1-x^2+2x
=>3=-x^2+4x-1
=>x^2-4x+1+3=0
=>x^2-4x+4=0
=>x=2(loại)
b: =>(x+2)(2x-4)=x(2x+3)
=>2x^2-4x+4x-8=2x^2+3x
=>3x=-8
=>x=-8/3(nhận)
1, Các bước giải phương trình chứa ẩn ở mẫu:
Bước 1: Tìm ĐKXĐ của phương trình
Bước 2: Quy đồng và khử mẫu phương trình
Bước 3: Giải phương trình đã khử mẫu
Bước 4: Đối chiếu nghiệm với ĐKXĐ
2, Bạn kiểm tra lại đề
\(\frac{x}{x-1}=\frac{x+4}{x+1}\Leftrightarrow x^2+x-\left(x^2+3x-4\right)=0\)
\(\Leftrightarrow-2x+4=0\Leftrightarrow x=2\)
-----------------------------------------------------------------
\(\frac{3}{x-2}=\frac{2x-1}{x-2}-x\Leftrightarrow\frac{3}{x-2}=\frac{2x-1}{x-2}-\frac{x^2-2x}{x-2}\)
\(\Leftrightarrow2x-1-x^2+2x-3=0\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x=2\)
a: \(\Leftrightarrow\dfrac{y+5}{y\left(y-5\right)}-\dfrac{y-5}{2y\left(y+5\right)}=\dfrac{y+25}{2\left(y-5\right)\left(y+5\right)}\)
\(\Leftrightarrow2\left(y+5\right)^2-\left(y-5\right)^2=y^2+25y\)
=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)
=>30y+25=25y
=>5y=-25
=>y=-5(loại)
b: \(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)
=>x^2+x+x^2-3x-4x=0
=>2x^2-6x=0
=>2x(x-3)=0
=>x=0(nhận) hoặc x=3(loại)
c: =>x^2-9-6(2x+7)=-13(x+3)
=>x^2-9-12x-42+13x+39=0
=>x^2+x-6=0
=>(x+3)(x-2)=0
=>x=2(nhận) hoặc x=-3(loại)
\(\frac{x}{x+1}-\frac{2x-3}{x-1}=\frac{2x+3}{x^2-1}\) ĐKXĐ: x ≠ 1; x ≠ -1
⇔x(x - 1) - (2x - 3)(x + 1) = 2x + 3
⇔ x2 - x - 2x2 + 3x - 2x + 3 = 2x + 3
⇔ -x2 - 2x = 0
⇔ -x(x + 2) = 0
⇔ \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\) (TM)
Vậy nghiệm của pt là x = 0; x = -2
ĐKXĐ: x≠1; x≠-1
Ta có: \(\frac{x}{x+1}-\frac{2x-3}{x-1}=\frac{2x+3}{x^2-1}\)
\(\Leftrightarrow\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{\left(2x-3\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x+3}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x^2-x-\left(2x^2+2x-3x-3\right)-\left(2x+3\right)=0\)
\(\Leftrightarrow x^2-x-2x^2+x+3-2x-3=0\)
\(\Leftrightarrow-x^2-2x=0\)
\(\Leftrightarrow-x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: x∈{0;-2}