K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023

\(x^4-x^2+10x-25\)

\(=x^4-\left(x^2-10x+25\right)\)

\(=\left(x^2\right)^2-\left(x^2-2\cdot5\cdot x+5^2\right)\)

\(=\left(x^2\right)^2-\left(x-5\right)^2\)

\(=\left[x^2-\left(x-5\right)\right]\left[x^2+\left(x-5\right)\right]\)

\(=\left(x^2-x+5\right)\left(x^2+x-5\right)\)

27 tháng 11 2016

x^4+5x^2-5x^2-25+2x^3+10x

= x^2(x^2+5)-5(x^2+5)+2x(x^2+5)

=(x^2+5)(x^2-5+2x):(x^2+5)

= x^2-5+2x

21 tháng 4 2020

( x+ 2x3 + x - 25 ) : ( x2 +5) 

21 tháng 6 2018

Giải:

1) \(\left(x-6\right)\left(x^2+6x+36\right)-\left(x+4\right)^3=\left(x-2\right)^3+\left(x+5\right)\left(x^2-10x+25\right)-\left(2x^3+6x^2\right)\)

\(\Leftrightarrow x^3-216-\left(x^3+12x^2+48x+64\right)=x^3-6x^2+12x-8+x^3+125-2x^3-6x^2\)

\(\Leftrightarrow x^3-216-x^3-12x^2-48x-64=x^3-6x^2+12x-8+x^3+125-2x^3-6x^2\)

\(\Leftrightarrow-280-12x^2-48x=-12x^2+12x+117\)

\(\Leftrightarrow-280-48x-12x-117=0\)

\(\Leftrightarrow-397-60x=0\)

\(\Leftrightarrow-60x=397\)

\(\Leftrightarrow x=-\dfrac{397}{60}\)

Vậy ...

2) \(\left(2x+3\right)^3-\left(2x+5\right)\left(4x^2-10x+25\right)=\left(6x-1\right)^2-\left(x-2\right)\left(x^2+2x+4\right)+x^3\)

\(\Leftrightarrow8x^3+36x^2+54x+27-\left(8x^3+125\right)=36x^2-12x+1-\left(x^3-8\right)+x^3\)

\(\Leftrightarrow8x^3+36x^2+54x+27-8x^3-125=36x^2-12x+1-x^3+8+x^3\)

\(\Leftrightarrow54x-98=-12x+9\)

\(\Leftrightarrow54x+12x=9+98\)

\(\Leftrightarrow66x=107\)

\(\Leftrightarrow x=\dfrac{107}{66}\)

Vậy ...

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

10.

\((x^2-2x-3)(x^2+10x+21)=25\)

\(\Leftrightarrow (x-3)(x+1)(x+3)(x+7)=25\)

\(\Leftrightarrow [(x-3)(x+7)][(x+1)(x+3)]=25\)

\(\Leftrightarrow (x^2+4x-21)(x^2+4x+3)=25\)

Đặt \(x^2+4x-21=a\) thì pt trở thành:

\(a(a+24)=25\)

\(\Leftrightarrow a^2+24a-25=0\)

\(\Leftrightarrow (a-1)(a+25)=0\Rightarrow \left[\begin{matrix} a=1\\ a=-25\end{matrix}\right.\)

Nếu \(a=x^2+4x-21=1\Leftrightarrow x^2+4x-22=0\)

\(\Leftrightarrow (x+2)^2=26\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\) (t/m)

Nếu \(a=x^2+4x-21=-25\Leftrightarrow x^2+4x+4=0\Leftrightarrow (x+2)^2=0\Rightarrow x=-2\) (t/m)

Vậy \(x\in \left\{-2\pm \sqrt{26}; -2\right\}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2019

11.

\(x^4-4x^3+10x^2+37x-14=0\)

\(\Leftrightarrow (x^4-4x^3+4x^2)+6x^2+37x-14=0\)

\(\Leftrightarrow x^4+2x^3-(6x^3+12x^2)+(22x^2+44x)-(7x+14)=0\)

\(\Leftrightarrow x^3(x+2)-6x^2(x+2)+22x(x+2)-7(x+2)=0\)

\((x+2)(x^3-6x^2+22x-7)=0\)

\(\Rightarrow \left[\begin{matrix} x+2=0\\ x^3-6x^2+22x-7=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x^3-6x^2+22x-7=0(*)\end{matrix}\right.\)

Đối với pt $(*)$ (ta sử dụng pp Cardano)

\(\Leftrightarrow (x^3-6x^2+12x-8)+10x+1=0\)

\(\Leftrightarrow (x-2)^3+10(x-2)+21=0\)

Đặt \(x-2=a-\frac{10}{3a}\) thì PT trở thành:

\((a-\frac{10}{3a})^3+10(a-\frac{10}{3a})+21=0\)

\(\Leftrightarrow a^3-\frac{1000}{27a^3}+21=0\)

\(\Leftrightarrow 27a^6+576a^3-1000=0\). Đặt \(a^3=t\) thì:

\(27t^2+576t-1000=0\)

\(\Rightarrow 27(t^2+\frac{64}{3}t+\frac{32^2}{3^2})=4072\)

\(\Leftrightarrow 27(t+\frac{32}{3})^2=4072\Rightarrow t=\pm\sqrt{\frac{4072}{27}}-\frac{32}{3}\)

\(\Rightarrow a=\sqrt[3]{\pm \sqrt{\frac{4072}{27}}-\frac{32}{3}}\)

\(x=2+a-\frac{10}{3a}\) với giá trị $a$ như trên.

P/s: Bài này mình thấy có vẻ không phù hợp với lớp 8.

3 tháng 9 2018

\(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)

\(=1\)

8 tháng 12 2018

a.(2x - 5)(3x + 4) - x(6x - 5) = 4

⇔ 6x2 +8x -15x-20-6x2+5x=4

⇔-2x=24

⇔ x=-12

vậy x=12

b.(x - 2)2 + x(x - 2) = 0

⇔(x-2)(x-2+x)=0

⇔(x-2) (2x-2)=0

⇔ (x-2)2(x-2)=0

⇔(x-2)2.2=0

⇔(x-2)2=0

⇔x-2=0

⇔x=2

vậy x=2

c.(x3 + 4x2 - x - 4) : (x + 4) = 0

⇔[(x3+4x2)-(x+4)] :(x+4)=0

⇔ [x2(x+4)-(x+4)] :(x+4)=0

⇔ (x+4)(x2-1):(x+4)=0

⇔(x-1)(x+1)=0

\(\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

vậy \(\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)