Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=x^2\left(a>=0\right)\)
pt trở thành \(a^2+\left(1-2m\right)a+m^2-1=0\)
\(\text{Δ}=\left(1-2m\right)^2-4\left(m^2-1\right)\)
\(=4m^2-4m+1-4m^2+4=-4m+5\)
a: Để pt vô nghiệm thì -4m+5<0
hay m>5/4
b: Để phương trình có hai nghiệm phân biệt thì -4m+5>0
hay m<5/4
c: Để pt có 4 nghiệm phân biệt thì
\(\left\{{}\begin{matrix}m< \dfrac{5}{4}\\-2m+1>0\\m^2-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -1\\\dfrac{1}{2}< m< 1\end{matrix}\right.\)
a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)
Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)
Để PT (1) thì PT(2) vô nghiệm:
Để PT(2) vô nghiệm thì: \(\Delta=\left(1-2m\right)^2-4.\left(m^2-1\right)<0\Leftrightarrow1-4m+4m^2-4m^2+4<0\)
<=>5-4m<0
<=>m>5/4
b)Để PT(1) có 2 nghiệm phân biệt thì PT(2) có duy nhất 1 nghiệm
Để PT(2) có duy nhất 1 nghiệm thì:
\(\Delta=5-4m=0\Leftrightarrow m=\frac{5}{4}\)
c)Để PT(1) có 4 nghiệm phân biệt thì PT(2) có 2 nghiệm phân biệt:
Để PT(2) có 2 nghiệm phân biệt thì:
\(\Delta=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)
Mem đây ko rành lắm sai bỏ qua
Trường hợp 1: m=0
Phương trình sẽ là:
\(0x^2-2\cdot\left(0-1\right)x+0-3=0\)
=>2x-3=0
hay x=3/2
=>Phương trình có đúng một nghiệm dương, còn hai trường hợp còn lại thì ko đúng
Trường hợp 2: m<>0
a:
Để phương trình có hai nghiệm trái dấu thì m(m-3)<0
hay 0<m<3
b:\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)
\(=4m^2-8m+4-4m^2+12m\)
=4m+4
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m>-1\\\dfrac{2\left(m-1\right)}{m}>0\\\dfrac{m-3}{m}>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1< m< 0\\m>3\end{matrix}\right.\)
\(x^2-\left(m-2\right)x+m\left(m-3\right)=0\)
\(\Leftrightarrow x^2-\left(m-2\right)x+\left(m^2-3m\right)=0\) (*)
\(\Delta'=\left(m-2\right)^2-\left(m^2-3m\right)\)
\(=m^2-4m+4-m^2+3m\)
\(=4-m\). Để (*) có 2 nghiệm phân biệt suy ra \(\Delta'>0\)
\(\Rightarrow4-m>0\Rightarrow m< 4\)
Vậy với m=4 (*) có 2 nghiệm phân biệt
Có 2 nghiệm phân biệt cùng dấu dương
\(\hept{\begin{cases}\Delta>0\\P>0\end{cases}\Leftrightarrow\hept{\begin{cases}-2m^2+11m-5>0\\\frac{3\left(m-2\right)}{m-1}>0\end{cases}}}\)
ĐK
\(\hept{\begin{cases}\frac{1}{2}< m< 5\\m< 1haym>2\end{cases}\Leftrightarrow\frac{1}{2}< m< 1\left(hay\right)2< m< 5}\)
pt <=> \(\orbr{\begin{cases}3\left(x^2-6x+5\right)=2-4m\\3\left(x^2-6x+5\right)=4m-2\end{cases}}\)
<=> \(\orbr{\begin{cases}3x^2-18x+13+4m=0\left(1\right)\\3x^2-18x+17-4m=0\left(2\right)\end{cases}}\)
Điều kiện để phương trình ban đầu có 4 nghiệm phân biệt là phương trình (1),và phương trình (2) đều đồng thời có hai nghiệm phân biệt.
Điều kiện phương trình (1) có hai nghiệm phân biệt:
\(\Delta'>0\Leftrightarrow9^2-3.\left(13+4m\right)>0\Leftrightarrow m< \frac{7}{2}\)
Điều kiện phương trình (2) có hai nghiệm phân biệt:
\(\Delta'>0\Leftrightarrow9^2-3.\left(17-4m\right)>0\Leftrightarrow m>\frac{-5}{2}\)
Vậy \(-\frac{5}{2}< m< \frac{7}{2}\) thì phương trình ban đầu có 4 nghiệm phân biêt.
\(mx^2-2\left(m-1\right)x+m-3=0\) (*)
\(\Delta'=\left(m-1\right)^2-m^2\)\(=\left(m-1-m\right)\left(m-1+m\right)\)
\(=-1\left(2m-1\right)\).(*) có 2 nghiệm phân biệt khi \(\Delta'>0\)
\(\Rightarrow-1\left(2m-1\right)>0\Rightarrow2m>1\Rightarrow m>\frac{1}{2}\)
Vậy (*) có 2 nghiệm phân biệt khi \(m>\frac{1}{2}\)
Đặt \(x^2=a\) ta có
\(a^2+\left(1-2m\right)a+m^2-1=0\) (2)
\(\Delta=\left(1-2m\right)^2-4\cdot\left(m^2-1\right)\cdot1\\ =1-4m+4m^2+1\\ =5-4m\)
đẻ pt :\(\text{x4 + (1-2m)x2+m2-1=0}\) có 4 n => pt2 phải có 2n
=> m<\(\frac{5}{4}\)
b)
\(x_1=\frac{-\left(1-2m\right)-\sqrt{5-4m}}{2}:x_2=\frac{-\left(1-2m\right)+\sqrt{5-4m}}{2}\)
để pt có 3 n =>
\(-\left(1-2m\right)-\sqrt{5-4m}=0\) hoặc
\(-\left(1-2m\right)+\sqrt{5-4m}\)
=>để pt có 3 n : x=1
hoặc: x=-1