K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2015

Theo bài ra ta có 

\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

Từ đó => x ; y ; z 

Đáng ra làm ttuwngf bước nhưng mình làm tắt 

6 tháng 2 2016

trước đi rồi mìh giải cho

25 tháng 1 2019

\(1)-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)

\(\Rightarrow-4x^2-\left(-20x\right)-16x+4x^2=-3\)

\(\Rightarrow20x-14x=-3\)

\(\Rightarrow6x=-3\)

\(\Rightarrow x=-\dfrac{1}{2}\)

Vậy \(x=-\dfrac{1}{2}\)

\(2)\) Theo bài ra, ta có: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)\(x^2+y^2+z^2=14\)

\(\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Rightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)

\(\Rightarrow\sqrt[3]{\left(\dfrac{x}{2}\right)^3}=\sqrt[3]{\left(\dfrac{y}{4}\right)^3}=\sqrt[3]{\left(\dfrac{z}{6}\right)^3}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\)

\(\Rightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

Suy ra:

\(+)\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}.4=1=\left(\pm1\right)^2\Rightarrow x=\pm1\)

\(+)\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{16}.4=\dfrac{1}{4}=\left(\pm\dfrac{1}{2}\right)^2\Rightarrow y=\pm\dfrac{1}{2}\)

\(+)\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{36}.4=\dfrac{1}{9}=\left(\pm\dfrac{1}{3}\right)^2\Rightarrow z=\pm\dfrac{1}{3}\)

Vậy \(\left(x;y;z\right)\in\left\{\left(-1;-\dfrac{1}{2};-\dfrac{1}{3}\right);\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\right\}\)

25 tháng 1 2019

Oz Vessalius Câu 3 bạn xem lại xem có sai đề không?

1 tháng 10 2017

x3/8= y3/64= z3/216 suy ra \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Leftrightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{x^2}{1}=\frac{y^2}{4}=\frac{z^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{1}=\frac{y^2}{4}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{1+4+9}=\frac{14}{14}=1\)

Lần lượt suy ra \(\hept{\begin{cases}x^2=1\\y^2=4\\z^2=9\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}}\)

Từ \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)ta suy ra x,y,z cùng dấu do đó (x,y,z) là ( 1;2;3) hoặc ( -1;-2;-3).

24 tháng 9 2017

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Leftrightarrow\frac{x^3}{1}=\frac{y^3}{8}=\frac{z^3}{27}\Leftrightarrow\left(\frac{x}{1}\right)^3=\left(\frac{y}{2}\right)^3=\left(\frac{z}{3}\right)^3\Leftrightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)

\(\Leftrightarrow\frac{x^2}{1}=\frac{y^2}{4}=\frac{z^2}{9}\)

Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{x^2}{1}=\frac{y^2}{4}=\frac{z^2}{9}=\frac{x^2+y^2+z^2}{1+4+9}=\frac{14}{14}=1\)

=>\(x^2=1;y^2=4;z^2=9\)

Với x=-1 thì y=-2 và z=-3 

Với x=1 thì y=2 và z=3

Vậy ...