Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ko viết lại đề
Câu 1: chia ra làm 3 trường hợp
Câu 2:
\(\left(x+2-x+2\right)\left(x+2\right)=0\)
\(4\left(x+2\right)=0\)
\(\Rightarrow x+2=0\)
\(x=-2\)
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )
\(\Leftrightarrow x=2\)
b) \(2x^3+x^2-6x=0\)
\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)
c) \(4x^2+4xy+x^2-2x+1+y^2=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)
a) \(2x^2+3x-8=0\)
Ta có: \(\Delta=3^2+4.2.8=73\)
pt có 2 nghiệm
\(x_1=\frac{-3+\sqrt{73}}{4}\);\(x_1=\frac{-3-\sqrt{73}}{4}\)
d) \(\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)
Đặt \(x^2+2x=t\)
\(pt\Leftrightarrow t^2-2t-3=0\)
Ta có: \(\Delta=2^2+4.3=16,\sqrt{\Delta}=4\)
pt trên có 2 nghiệm
\(x_1=\frac{2+4}{2}=3;x_2=\frac{2-4}{2}=-1\)
\(\Rightarrow\orbr{\begin{cases}x^2+2x=3\\x^2+2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)\left(x-1\right)=0\\\left(x+1\right)^2=0\end{cases}}\)
\(\Rightarrow x\in\left\{-3;-1;1\right\}\)
c) \(x^4+8x^3+19x^2+12x=0\)
\(\Leftrightarrow x^4+4x^3+4x^3+16x^2+3x^2+12x=0\)
\(\Leftrightarrow\left(x^4+4x^3+3x^2\right)+\left(4x^3+16x^2+12x\right)=0\)
\(\Leftrightarrow x\left(x^3+4x^2+3x\right)+4\left(x^3+4x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^3+4x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^3+x^2+3x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2+3x\right)\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+3\right)\left(x+4\right)=0\)
\(\Leftrightarrow x\in\left\{0;-1;-3;-4\right\}\)
a)
pt <=> \(x^2+4x+4+x^2-6x+9=2x^2+14x\)
<=> \(2x^2-2x+13=2x^2+14x\)
<=> \(16x=13\)
<=> \(x=\frac{13}{16}\)
b)
pt <=> \(x^3+3x^2+3x+1+x^3-3x^2+3x-1=2x^3\)
<=> \(2x^3+6x=2x^3\)
<=> \(6x=0\)
<=> \(x=0\)
c)
pt <=> \(\left(x^3-3x^2+3x-1\right)-125=0\)
<=> \(\left(x-1\right)^3=125\)
<=> \(x-1=5\)
<=> \(x=6\)
d)
pt <=> \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
<=> \(\left(x-1\right)^2+\left(y+2\right)^2=0\) (1)
CÓ: \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)
=> \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DÁU "=" XẢY RA <=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e)
pt <=> \(2x^2+8x+8+y^2-2y+1=0\)
<=> \(2\left(x+2\right)^2+\left(y-1\right)^2=0\)
TA LUÔN CÓ: \(2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
=> DẤU "=" XẢY RA <=> \(\hept{\begin{cases}2\left(x+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a) ( x + 2 )2 + ( x - 3 )2 = 2x( x + 7 )
<=> x2 + 4x + 4 + x2 - 6x + 9 = 2x2 + 14x
<=> x2 + 4x + x2 - 6x - 2x2 - 14x = -4 - 9
<=> -16x = -13
<=> x = 13/16
b) ( x + 1 )3 + ( x - 1 )3 = 2x3
<=> x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 = 2x3
<=> x3 + 3x2 + 3x + x3 - 3x2 + 3x - 2x3 = -1 + 1
<=> 6x = 0
<=> x = 0
c) x3 - 3x2 + 3x - 126 = 0
<=> ( x3 - 3x2 + 3x - 1 ) - 125 = 0
<=> ( x - 1 )3 = 125
<=> ( x - 1 )3 = 53
<=> x - 1 = 5
<=> x = 6
d) x2 + y2 - 2x + 4y + 5 = 0
<=> ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0
<=> ( x - 1 )2 + ( y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e) 2x2 + 8x + y2 - 2y + 9 = 0
<=> 2( x2 + 4x + 4 ) + ( y2 - 2y + 1 ) = 0
<=> 2( x + 2 )2 + ( y - 1 )2 = 0 (*)
\(\hept{\begin{cases}2\left(x+2\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức xảy ra (*) ) <=> \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a. 3.(x-2)+2.(x-3)=13
x=5
b. (x+1).(2-x)-(3x+5).(x+2)=-4x2+1
x=-9/10
c.x.(5-2x)+2x.(x-1)=13
x=13/3
d. (2x+3)2-(x-1)2=0
x=-2/3
e. x2.(3x-2)-8+12=0
x vô ngiệm
f x2+x=0
x=-1
g. x3-5x=0
x=0
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
a) \(3\left(x-2\right)+2\left(x-3\right)=1\)\(3\)
\(3x-6+2x-6=13\)
\(5x=13+6+6\)
\(5x=25\)
\(x=25\)
c) \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
d) \(\left(2x+3\right)^2-\left(x-1\right)^2=0\)
\(\left(2x+3-x+1\right)\left(2x+3+x-1\right)=0\)
\(\left(x+4\right)\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x+4=0\\3x+2=0\end{cases}}=>\orbr{\begin{cases}x=-4\\x=\frac{-2}{3}\end{cases}}\)
f) \(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+1=0\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
g) \(x^3-5x=0\)
\(x^2\left(x-5\right)=0\)
\(=>\orbr{\begin{cases}x^2=0\\x-5=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=5\end{cases}}\) \(\)
\(\)
1)2x3+3x2+2x+3=0
=> (2x3+3x2)+(2x+3)=0
=> x2(2x+3)+(2x+3)=0
=> (2x+3)(x2+1)=0
=>\(\hept{\begin{cases}2x+3=0\\x^2+1=0\end{cases}}\)=>\(\hept{\begin{cases}2x=-3\\x^2=-1\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{-3}{2}\\vo.nghiem\end{cases}}\)
Vậy x=-3/2
2)x2-3x-18=0
=> (x2+3x)-(6x+18)=0
=> x(x+3)-6(x+3)=0
=> (x+3)(x-6)=0
=> \(\hept{\begin{cases}x+3=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=-3\\x=6\end{cases}}\)
Vậy x=-3 hoặc x=6
3)Sai đề rồi bạn, 30 thành 30x mới đúng
x3-11x2+30x=0
=> x(x2-11x+30)=0
=> x[(x2-5x)-(6x-30)]=0
=> x[x(x-5)-6(x-5)]=0
=> x(x-5)(x-6)=0
=>\(\hept{\begin{cases}x=0\\x-5=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=0\\x=5\\x=6\end{cases}}\)
Vậy x=0 hoặc x=5 hoặc x=6
a) x2(x-3)-12+4x=0
=>x2(x-3)+4x-12=0
=>x2(x-3)+4(x-3)=0
=>(x2+4)(x-3)=0
=>x-3=0 (loại x2+4=0 do x2+4 >= 4 > 0 với mọi x)
=>x=3
b)(2x-1)2-(x+3)2=0
=>(2x-1-x-3)(2x-1+x+3)=0
=>(x-4)(3x+2)=0
=>x=4 hoặc x=-2/3
c)2x2-5=0
=>2x2=5=>x2=\(\frac{5}{2}=>\hept{\begin{cases}x=\sqrt{\frac{5}{2}}\\x=-\sqrt{\frac{5}{2}}\end{cases}}\)
\(2x\left(x-3\right)-x+3=0\)
<=> \(2x\left(x-3\right)-\left(x-3\right)=0\)
<=> \(\left(x-3\right)\left(2x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)
Vậy...
Ta có: \(x^3-2x^2-x+2=0\)
\(\Leftrightarrow x^2\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)
- Ũa được sửa đề hã ?