K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2016

DÀI THẾ AI LÀM NỔI

12 tháng 9 2020

a) x2 - y2 + 4x + 4

= ( x2 + 4x + 4 ) - y2

= ( x + 2 )2 - y2

= ( x + 2 - y )( x + 2 + y )

b) x2 - 2xy + y2 - 1

= ( x2 - 2xy + y2 ) - 1

= ( x - y )2 - 12

= ( x - y - 1 )( x - y + 1 )

c) x2 - 2xy + y2 - 4

= ( x2 - 2xy + y2 ) - 4

= ( x - y )2 - 22

= ( x - y - 2 )( x - y + 2 )

d) x2 - 2xy + y2 - z2

= ( x2 - 2xy + y2 ) - z2

= ( x - y )2 - z2

= ( x - y - z )( x - y + z )

e) 25 - x2 + 4xy - 4y2

= 25 - ( x2 - 4xy + 4y2 )

= 52 - ( x - 2y )2

= ( 5 - x + 2y )( 5 + x - 2y )

f) x2 + y2 - 2xy - 4z2

= ( x2 - 2xy + y2 ) - 4z2

= ( x - y )2 - ( 2z )2

= ( x - y - 2z )( x - y + 2z )

13 tháng 10 2019

a) \(xy+x-y=2\)

\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=1\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=y+1=1\\x-1=y+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=0\\x=0;y=-2\end{cases}}\)

b) \(x-2xy+y=0\)

\(\Leftrightarrow2x-4xy+2y=0\)

\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Tương tự nha

13 tháng 10 2019

c) \(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)y-2\left(x-2\right)=3\)

\(\Leftrightarrow\left(x-2\right)\left(x+y-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

21 tháng 8 2018

a ) \(x^2\left(x+3\right)+y^2\left(y+5\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow x^3+3x^2+y^3+5y^2-\left(x^3+y^3\right)=0\)

\(\Leftrightarrow3x^2+5y^2=0\)

Do \(\left\{{}\begin{matrix}3x^2\ge0\forall x\\5y^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow3x^2+5y^2\ge0\forall x;y\)

Dấu " = " xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2=0\\5y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy \(x=0;y=0\)

b )\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(-16\left(x^3-y\right)=32\)

\(\Leftrightarrow\left[\left(2x\right)^3-y^3\right]+\left[\left(2x\right)^3+y^3\right]-16x^3+16y=32\)

\(\Leftrightarrow8x^3-y^3+8x^3+y^3-16x^3+16y=32\)

\(\Leftrightarrow16y=32\)

\(\Leftrightarrow y=2\)

Vậy \(y=2\)

haha

23 tháng 9 2016

A chỉ đạt max

B=(x^2+y^2+1-2xy+2x-2y)+(x^2-4x+4)-10

B=(x-y+1)^2+(x-2)^2-10\(\ge\)-10

C=((x^2+y^2-2xy)-10(x-y)+25)+3(y^2-2y+1)+4

C=(x-y-5)^2+3(y-1)^2+4\(\ge\)4

31 tháng 8 2020

a) ( x - 1 )3 + 3x( x - 1 )2 + 3x2( x - 1 ) + x3

= [ ( x - 1 ) + x ) ]3 ( HĐT số 4 )

= [ x - 1 + x ]3

= [ 2x - 1 ]3 

=> đpcm

b) ( x2 - 2xy )3 + 3( x2 - 2xy )y2 + 3( x2 - 2xy )y4 + y6

= [ ( x2 - 2xy ) + y2 ]3 ( HĐT số 4 )

= [ x2 - 2xy + y2 ]3

= [ ( x - y )2 ]3

= ( x - y )6

=> đpcm

28 tháng 7 2019

GIÚP MÌNH VỚI ĐỀ BÀI LÀ RÚT GỌN THÔI NHA THUỘC KIỂU HẰNG ĐẲNG THỨC 6 VÀ 7 GIÚP MÌNH VỚI MÌNH CẦN GẤP TRONG TỐI NAY GIÚP VỚI

28 tháng 7 2019

GIÚP VỚI