Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
ko mất tính tổng quát ta g/s x<y<z<t
=>1/x>1/y>1/z>1/t
=>4.1/x>1/x+1/y+1/z+1/t=1
=> 4/x>1 =>x<4 mà x nguyên dương =>x=1 hoặc 2;3
thử từng th ra rồi làm tương tự
a: Thay x=2 vào (P),ta được:
y=2^2/2=2
2: Thay x=2 và y=2 vào (d), ta được:
m-1+2=2
=>m-1=0
=>m=1
\(\Delta=9-4\left(1-m\right)=4m+5\)
Pt có 2 nghiệm khi: \(4m+5\ge0\Rightarrow m\ge-\dfrac{5}{4}\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=1-m\end{matrix}\right.\)
\(x_1^2+x_2^2=17\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=17\)
\(\Leftrightarrow9-2\left(1-m\right)=17\)
\(\Leftrightarrow2m=10\)
\(\Rightarrow m=5\) (thỏa mãn)
a) A = \(\sum\limits^{50}_1\left(2x\right)-\sum\limits^{50}_1\left(2x-1\right)\) = 5050
b) B = \(\sum\limits^{2010}_1x^3\) = 4084663313000