K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

\(x^2-y^2+2x-4y-10=0\)\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)\(\Leftrightarrow\left[\left(x+1\right)-\left(y+2\right)\right]\left[\left(x+1\right)+\left(y+2\right)\right]=7\)\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7.\)

Mà x, y nguyên dương nên x - y - 1 và x + y + 3 nguyên => x - y - 1 và x + y + 3 là ước nguyên của 7. Do đó ta có bảng sau:

x - y - 11-17-7
x + y + 37-71-1
x - y208-6
x + y4-10-2-4
x3-53-5
y1-5-51
Kết luậnthoả mãnx, y < 0 (loại)y < 0 (loại)x < 0 (loại)

Vậy với x = 3, y = 1 thì thoả mãn \(x^2-y^2+2x-4y-10=0.\)

8 tháng 6 2017

=>xy(1-1+2-4)=10

=>xy(-2)=10

=>xy=-5

tự tìm

8 tháng 6 2017

=> xy( 1-1+2-1) = 10

=> xy(-2) = 10

=> xy = -5

Còn nữa

30 tháng 1 2017

xin lỗi mk mới học lớp 6 nên ko biết!

ủng hộ mk nha!

30 tháng 1 2017

Phương trình... e k bt

20 tháng 6 2015

Bài 1:Ta có x + y = 10 và xy=24 nên

(x+y) - 4xy = 102 - 4*24

hay x2 +y2 -2xy = 100-96

nên (x-y)=4

Từ đó ta có x - y = -2 hoặc x - y = 2

Nếu x - y =2 và x+y=10 thì ta được x = 6; y=4

Nếu x - y = -2 va x+y=10 thì ta được x = 4; y=6

Bài 2

Ta có: x+ y- 2x + 4y + 5 = 0

hay x2 - 2x +1 + y2 +4y +4=0

nên (x-1)2 + (y+2)2 =0

mà (x-1)2 >=0; (y+2)>=0

Từ đó suy ra được x=1; y=-2

14 tháng 7 2018

a)  \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)       với mọi x

b)   \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x

c)  \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)  với mọi x,y

d)  bạn kiểm tra lại đề câu d) nhé:

 \(x^2+4y^2+z^2-2x-6y+8z+15\)

\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)

14 tháng 7 2018

Đề câu d đúng mà!

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ