K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Hỏi đáp Toán

13 tháng 1 2019

Bạn ơi! Bạn có thể giải thích hàng thứ 2 từ dưới đến lên giúp mình dc ko?

7 tháng 1 2019

x+ y2+z2+2xy+2yz+2xz

=(x+y+z)2

=42=16

8 tháng 1 2019

@Thế là có me bạn cần c/m đẳng thức này nữa nha

\(x^2+y^2+z^2+2xy+2yz+2xz\)

\(=\left(x^2+2xy+y^2\right)+2z\left(x+y\right)+z^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)

\(=\left(x+y+z\right)^2\)

Thay x + y + z = 4 ta có :

\(\left(x+y+z\right)^2=4^2=16\)

Vậy......

19 tháng 7 2017

các bạn ơi giúp mình với

12 tháng 10 2019

a) Áp dụng BĐT Cauchy cho 2 số dương:

\(x^2+y^2\ge2\sqrt{\left(xy\right)^2}=2xy\)

\(y^2+z^2\ge2\sqrt{\left(yz\right)^2}=2yz\)

\(x^2+z^2\ge2\sqrt{\left(xz\right)^2}=2xz\)

Cộng từ vế của các BĐT trên:

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=y\end{cases}}\Leftrightarrow x=y=z\))

12 tháng 10 2019

b) \(2x^2+2y^2+z^2+2xy+2yz+2xz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+10x+25\right)\)

\(+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)(1)

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)nên (1) xảy ra

\(\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}\)