Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\((3x)^3\)=-64(=)3x=-4(=)x=\(-\frac{4}{3}\)
ý b thiếu đề bài
a)\(27x^3+64=0\)
\(\Rightarrow27x^3=-64\)
\(\Rightarrow x^3=-\frac{64}{27}\)
\(\Rightarrow x^3=\left(-\frac{4}{3}\right)^3\)
\(\Rightarrow x=-\frac{4}{3}\)
\(3x^3+2x^2+2x+3=0\)
\(\Leftrightarrow3\left(x^3+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow3\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2-x+3\right)=0\)
Mà \(3x^2-x+3=3\left[\left(x-\frac{1}{6}\right)^2+\frac{35}{36}\right]>0\forall x\)
Do đó: \(x+1=0\Leftrightarrow x=-1\)
Tập nghiệm: \(S=\left\{-1\right\}\)
\(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)
\(\Leftrightarrow\left[\left(x-1\right)+\left(2x+3\right)\right]\left[\left(x-1\right)^2-\left(x-1\right)\left(2x+3\right)+\left(2x+3\right)^2\right]=27x^3+8\)
\(\Leftrightarrow\left(3x+2\right)\left(x^2-2x+1-2x^2-3x+2x+3+4x^2+12x+9\right)=27x^3+8\)
\(\Leftrightarrow\left(3x+2\right)\left(3x^2+9x+13\right)=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(6x^2-15x-9\right)=0\)(Chuyển vế)
\(\Leftrightarrow3\left(3x+2\right)\left(2x^2-5x-3\right)=0\)
\(\Leftrightarrow3\left(3x+2\right)\left(x-3\right)\left(2x+1\right)=0\)
Tập nghiệm: \(S=\left\{-\frac{2}{3};3;-\frac{1}{2}\right\}\)
1) \(27+27x+9x^2+x^3\)
\(=3^3+3.3^2.x+3.3.x^2+x^3\)
\(=\left(3+x\right)^3\)
2) \(8-27x^3\)
\(=2^3-\left(3x\right)^3\)
\(=\left(2-3x\right)\left[2^2+2.3x+\left(3x\right)^2\right]\)
\(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
\(1,27+27+9x^2+x^3\)
\(=\left(3+x\right)^3\)
\(2,8-27x^3\)
\(=\left(2-3x\right).\left(4+6x+9x^2\right)\)
\(3,x^{64}+x^{32}+1\)
\(=\left(x^{64}+2x^{32}+1\right)-x^{32}\)
\(=\left(x^{32}+1\right)^2-x^{32}\)
\(=\left(x^{32}+1-x^{16}\right).\left(x^{32}+1+x^{16}\right)\)
Công nhận câu 3 hơi căng~
12x3+4x2-27x-9=(12x3+4x2)-(27x-9)=4x2(3x+1)-32(3x+1)=(3x+1)(4x2-32)
cau b mjk chua ra
a) \(\left(x+1\right)^2-2\left(x+1\right)\left(3-x\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+2\left(x+1\right)\left(x-3\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1+x-3\right)^2=0\)
\(\Leftrightarrow\left(2x-2\right)^2=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Vậy x = 1
b) \(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2=0\)
\(\Leftrightarrow\left(x+2-x+8\right)^2=0\)
\(\Leftrightarrow\)\(\left(0x+10\right)^2=0\)
=> Phương trình vô nghiệm
Bài : 1 Ta có : (x - 2)3 + 6(x + 1)2 - x3 + 12 = 0
=> x3 - 6x2 + 12x - 8 + 6(x2 + 2x + 1) - x3 + 12 = 0
=> x3 - 6x2 + 12x - 8 + 6x2 + 12x + 6 - x3 + 12 = 0
=> 24x - 10 = 0
=> 24x = 10
=> x = 5/12
Vạy x = 5/12
Bài 4 : Ta có : M = x2 + 6x - 1
=> M = x2 + 6x + 9 - 10
=> M = (x + 3)2 - 10
Vì : \(\left(x+3\right)^2\ge0\forall x\)
Nên : M = (x + 3)2 - 10 \(\ge-10\forall x\)
Vậy Mmin = -10 khi x = -3
Ta có: \(x^2-27x-64=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{27}{2}+\frac{729}{4}-\frac{985}{4}=0\)
\(\Leftrightarrow\left(x-\frac{27}{2}\right)^2=\frac{985}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{27}{2}=\sqrt{\frac{985}{4}}\\x-\frac{27}{2}=-\sqrt{\frac{985}{4}}\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\sqrt{\frac{985}{4}}+\frac{27}{2}=\frac{27+\sqrt{985}}{2}\\x=-\sqrt{\frac{985}{4}}+\frac{27}{2}=\frac{27-\sqrt{985}}{2}\end{matrix}\right.\)
Vậy: \(x=\frac{27\pm\sqrt{985}}{2}\)