Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2-2y=xy-4x
2x2+4x-2y-xy=0
\(\left(2x-y\right)\left(x+2\right)=0\)
\(2x=y\)
hoặc
x=-2
thế vo pt hai rồi giải là đc
Ta có:
\(\hept{\begin{cases}x^2+y^2+2y=4\\2x+y+xy=4\end{cases}}\)
<=> \(\hept{\begin{cases}x^2+y^2+2y=4\\4x+2y+2xy=8\end{cases}}\)
=>\(x^2+y^2+4y+4x+2xy-12=0\)
<=> \(\left(x+y\right)^2+4\left(x+y\right)-12=0\)
<=> \(\orbr{\begin{cases}x+y=2\\x+y=-6\end{cases}}\)
TH1: Với x + y = 2 ta có: y = 2 - x
Thế vào phương trình (2) ta có: \(2x+2-x+x\left(2-x\right)=4\)
<=> \(x^2-3x+2=0\)<=> x = 2 hoặc x = 1
Với x = 2 ta có: y = 0 thử lại thỏa mãn
Với x = 1 ta có: y = 1 thử lại thỏa mãn
+) TH2: Với x + y =- 6 ta có: y = -6 - x
Thế vào phương trình (2) ta có: \(2x-6-x+x\left(-6-x\right)=4\)
<=> \(x^2+5x+10=0\)phương trình vô nghiệm
Vậy:...
+) Xét y = 0 :
từ pt1 => x2 = 1/2
từ pt2 => x2 = 7/4 \(\ne\) 1/2
=> y = 0 không thỏa mãn hpt
Vậy y \(\ne\) 0. Khi đó, chia cả hai vế của pt1; pt2 cho y2 ta được:
pt1 <=> \(2.\left(\frac{x}{y}\right)^2-\frac{x}{y}=\frac{1}{y^2}\)(*)
pt2 <=> \(4.\left(\frac{x}{y}\right)^2+4.\frac{x}{y}-1=\frac{7}{y^2}\).(**)
Thế (*) vào (**) ta được: \(4.\left(\frac{x}{y}\right)^2+4.\frac{x}{y}-1=14.\left(\frac{x}{y}\right)^2-7.\frac{x}{y}\)
<=> \(10.\left(\frac{x}{y}\right)^2-11.\frac{x}{y}+1=0\)
GPT bậc hai ẩn x/y => x/y = 1 hoặc x/y = 1/10
+) x/y = 1 => x = y . thay vào pt 1 => x; y...
bạn tự làm tiếp nhé!
\(\hept{\begin{cases}2x^2+3xy-3y^2=-1\\4x^2-xy=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}36x^2+54xy-54y^2=-18\\4x^2-xy=18\end{cases}}\)
\(\Rightarrow40x^2+53xy-54y^2=0\)
\(\Leftrightarrow\left(40x-27y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}40x=27y\\x=2y\end{cases}}\)
Từ đây bạn rút thế vào một trong hai phương trình ban đầu giải ra nghiệm.
1/ đặt x+y = a
xy=b
Ta có a(a2 - 3b) = 19
a(8+b)=2
Dùng phương pháp thế rồi giải tìm được a=1; b=-6
Từ đó ta suy ra x=-2 và y=3 hoặc x=3 và y =-2
2/ ta có 3x2 +4 xy + y2 = 0 <=> (2x+y)2 - x2 = 0 <=> (3x+y)(x+y)=0 từ đó dùng phương pháp thế vào phương trình còn lại là ra
giải hệ phương trình