Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(m+n\ne0.\)
\(\Rightarrow m+n+2017\ne2017.\)
Có:
\(x=\frac{m}{n+2017}=\frac{n}{m+2017}=\frac{2017}{m+n}\) và \(m+n+2017\ne2017.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(x=\frac{m}{n+2017}=\frac{n}{m+2017}=\frac{2017}{m+n}\)
\(\Rightarrow x=\frac{m+n+2017}{n+2017+m+2017+m+n}\)
\(\Rightarrow x=\frac{m+n+2017}{2m+2n+4034}\)
\(\Rightarrow x=\frac{m+n+2017}{2.\left(m+n+2017\right)}\)
\(\Rightarrow x=\frac{1}{2}.\)
Vậy \(x=\frac{1}{2}.\)
Chúc bạn học tốt!
Các bạn giúp ạ : @Vũ Minh Tuấn , @Băng Băng 2k6 , @Phạm Lan Hương , và cô @Akai Haruma
co m/n =2017/2017 => m/n=1 =>m=n => m+2017=n+2017
suy ra m+2017/n+2017 =1
ma m/n=1 => m/n=m+2017/n+2017
Ta có :
\(\frac{m}{n}=\frac{2017}{2017}\Leftrightarrow m=n\)
=> \(\frac{m+2017}{n+2017}=\frac{m+2017}{m+2017}=1=\frac{m}{n}\)
=> \(\frac{m}{n}=\frac{m+2017}{n+2017}\)(đpcm)
Ta có:
\(\frac{m}{n}+2017=\frac{n}{m}+2017\Rightarrow\frac{m}{n}=\frac{n}{m}\Rightarrow m^2=n^2\)
TH1: \(m=n\)
\(\Rightarrow x=1+2017=2018\)
TH2: \(-m=n\)
\(\Rightarrow x=-1+2017=2016\)
Vậy \(\left[{}\begin{matrix}x=2018\\x=2016\end{matrix}\right.\)
Theo bài ra ta có x + y + z = 2017
⇔\(\left\{{}\begin{matrix}2017-z=x+y\\2017-y=x+z\\2017-x=y+z\end{matrix}\right.\) (1)
Thay (1) vào \(A=\frac{x}{2017-z}+\frac{y}{2017-x}+\frac{z}{2017-y}\) ta được
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
Lại có \(\left\{{}\begin{matrix}x< x+y< x+y+z\\y< y+z< x+y+z\\z< x+z< x+y+z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{x+y+z}< \frac{x}{x+y}< 1\\\frac{y}{x+y+z}< \frac{y}{y+z}< 1\\\frac{z}{x+y+z}< \frac{z}{x+z}< 1\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\frac{x}{x+y+z}< \frac{x}{x+y}< \frac{x+z}{x+y+z}\\\frac{y}{x+y+z}< \frac{y}{y+x}< \frac{y+z}{x+y+z}\\\frac{z}{x+y+z}< \frac{z}{z+x}< \frac{z+y}{x+y+z}\end{matrix}\right.\)
( Áp dụng tính chất \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+c}\) )
⇔ \(\frac{x+y+z}{x+y+z}< \frac{x}{x+y}+\frac{y}{y+x}+\frac{z}{x+z}< \frac{2.\left(x+y+z\right)}{x+y+z}\)
⇔ 1 < A < 2
⇔ A ko phải là số nguyên
Học tốt ~~ lâu hơn lm hình r c ạ ))
xl nhá :) copy xg nó mất mấy chữ :))
Thêm vèo sao chữ lại có nè :
"Lại có : x ; y ; z thực dương nên ....."
))
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2018}+\frac{1}{2019}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2018}+\frac{1}{2019}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}=N\)
\(\Rightarrow M-N=0\Rightarrow\left(M-N\right)^2=0\)
Vì \(\frac{n}{m+2017}=\frac{2017}{m+n}\Rightarrow n\left(m+n\right)=2017\left(m+2017\right)\Rightarrow n=2017\)
\(\frac{m}{n+2017}=\frac{2017}{m+n}\Rightarrow2017\left(n+2017\right)=m\left(m+n\right)\Rightarrow m=2017\)
\(\Rightarrow x=\frac{2017}{2017+2017}=\frac{2017}{2017+2017}=\frac{2017}{2017+2017}=\frac{1}{2}\)