Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(2017-\left(\frac{1}{4}+\frac{2}{5}+\frac{3}{6}+\frac{4}{7}+...+\frac{2017}{2020}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{4}+\frac{2}{5}+...+\frac{2017}{2020}\right)\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{2}{5}\right)+...+\left(1-\frac{2017}{2020}\right)\)
\(=\frac{3}{4}+\frac{3}{5}+....+\frac{3}{2020}\)
\(=\frac{3.5}{4.5}+\frac{3.5}{5.5}+\frac{3.5}{6.5}+...+\frac{3.5}{2020.5}\)
\(=3.5\left(\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\right)\)
\(=15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
Thế vào ta có
\(\frac{15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)}{\frac{1}{20}+\frac{1}{25}+...+\frac{1}{10100}}=15\)
Được cập nhật 41 giây trước (17:23)
Ta có :
2017−(14 +25 +36 +47 +...+20172020 )
=(1+1+...+1)−(14 +25 +...+20172020 )
=(1−14 )+(1−25 )+...+(1−20172020 )
=34 +35 +....+32020
=3.54.5 +3.55.5 +3.56.5 +...+3.52020.5
=3.5(14.5 +15.5 +16.5 +...+12020.5 )
=15.(1
a) \(x^3-\frac{4}{25}x=0\)
\(\Leftrightarrow x\left(x+\frac{2}{5}\right)\left(x-\frac{2}{5}\right)=0\)
<=> x = 0
Xét 2 trường hợp:
\(\Leftrightarrow x+\frac{2}{5}=0\)
\(x=0-\frac{2}{5}\)
\(x=-\frac{2}{5}\)
\(\Leftrightarrow x-\frac{2}{5}=0\)
\(x=0+\frac{2}{5}\)
\(x=\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{2}{5}\end{cases}}\)
b) \(\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\left(\frac{3}{8}+\frac{-3}{4}+\frac{7}{12}\right):\frac{4}{3}\)
\(=\frac{13}{40}:\frac{4}{3}\)
\(=\frac{39}{120}=\frac{13}{40}\)
c) \(4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^2+3\left(\frac{-1}{2}\right)-1\left(\frac{-1}{2}\right)^0\)
\(=4\left(\frac{-1}{2}\right)^3-2\left(\frac{-1}{2}\right)^3+3\left(\frac{-1}{2}\right)-1.1\)
\(=-\frac{1}{2}-\frac{1}{2}-\frac{3}{2}-1.1\)
\(=-\frac{5}{2}-1\)
\(=-\frac{7}{2}\)
\(\frac{1}{2}=\frac{3}{-6}\)vì \(1.-6=3.2\)
Các câu sau tương tự vậy ấy
Tk mk nha
Ta xét A= \(\frac{1}{5^2}+\frac{1}{6^2}+..+\frac{1}{100^2}\)
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}...+\frac{1}{100.101}\)
=> \(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
=> \(A>\frac{1}{5}-\frac{1}{101}\)
=> \(A>\frac{96}{505}>\frac{96}{576}=\frac{1}{4}\)
Ta có : \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
=> \(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A< \frac{1}{4}-\frac{1}{100}\)
=> \(A< \frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)
\(\frac{2}{7}< \frac{x}{3}< \frac{11}{4};x\inℕ\)
=>\(\frac{12.2}{84}< \frac{28x}{84}< \frac{11.21}{84}\)
=>\(\frac{24}{84}< \frac{28x}{84}< \frac{231}{84}\)
=>24<28x<231
=>28x\(\in\){25;26;27;28;.............................;230}
=>Các số chia hết cho 28 là:28;56;84;112;140;168;196;224
=>x (thỏa mãn)\(\in\){1;2;3;4;5;6;7;8}
Vậy x\(\in\) {1;2;3;4;5;6;7;8}
\(\left(4,5m-\frac{3}{4}.5\frac{1}{3}\right).\frac{1}{12}+\frac{1}{2}x=1\frac{1}{2}\)
\(\left(4,5m-\frac{3}{4}.\frac{16}{3}\right).\frac{1}{2}.\frac{1}{6}+\frac{1}{2}x=\frac{3}{2}\)
\(\left(4,5m-\frac{48}{12}\right).\frac{1}{2}.\left(\frac{1}{6}+x\right)=\frac{3}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}:\frac{1}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}.\frac{2}{1}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{6}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=3\)
=>3\(⋮\)\(\frac{1}{6}+x\)
=>\(\frac{1}{6}+x\)\(\in\)Ư(3)={\(\pm\)1;\(\pm\)3}
Ta có bảng:
\(\frac{1}{6}+x\) | -1 | 1 | -3 | 3 |
x | \(-1\frac{1}{6}\) | \(1\frac{1}{6}\) | \(-3\frac{1}{6}\) | 3\(\frac{1}{6}\) |
Vậy x\(\in\){\(-1\frac{1}{6}\);\(1\frac{1}{6}\);\(-3\frac{1}{6}\);\(\frac{1}{6}\)}
Chúc bn học tốt
\(\frac{51}{92}\)
Tích nha
51/92