Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thêm x2 + y2 + z2 = 1 nha
HT nha vinh
Áp dụng BĐT Cô-si ta có:
\(xy\left(x^2+y^2\right)=\frac{1}{2}.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{\left(2xy+x^2+y^2\right)^2}{4}\)
\(=\frac{1}{2}.\frac{\left(x+y\right)^4}{4}=2\)
Dấu = xảy ra khi x = y = 1
https://diendantoanhoc.net/topic/119823-cho-xy2-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-xyx2-y2%E2%80%8B-2/
Theo bài ra ta có:
\(x^2y+xy^2+x+y=2010\)
\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)
\(\Rightarrow\left(x+y\right)\left(xy+1\right)=2010\)
\(\Rightarrow\left(x+y\right)\left(11+1\right)=2010\)
\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=2010\div12=167,5\)
Ta có: \(A=x^4+y^4=\left(x^2\right)^2+2x^2y^2+\left(y^2\right)^2-2x^2y^2\)
\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-2\times11^2\)
\(\Rightarrow\left[\left(167,5\right)^2-2.11\right]^2-245\)
\(\Rightarrow\left(28056,25-22\right)^2-245=785918928,0625\)
Bài này áp dụng BĐT Cô-si nhưng thử thế này:
Ta thấy x,y đều là số nguyên dương nên có 2 TH:
=> x+y=2=>0<xy<1(1)
Nếu 2xy(x2+y2) < 1 (2)
=>0<2xy(x2+y2) < \(\frac{\left(x+4\right)}{4}\) =4
=> 0< xy (x2 + y2)<2
Nhân (1) và (2) theo vế:
Ta có: x2y2 (x2+ y2)<2
đpcm.
Dấu "=" xảy ra khi x=y=1
có công cụ để ghi mà. bạn dùng cái đó nó dễ nhìn hơn. chứ thế này thì khó giải lắm