K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

$\sin18=\cos72=2 \cos^{2}36-1=2(1- \sin^{2}18)^{2}-1
\Leftrightarrow 8 \sin^{4}18 -8 \sin^{2}18- \sin18+1=0
\Leftrightarrow ( \sin18-1)[8 \sin^{3}18+8 \sin^{2}18-1]=0 $

ht

AH
Akai Haruma
Giáo viên
30 tháng 7 2020

Lời giải:

$8\sin ^2x\sin (x+60)\sin (x-60)=-4\sin ^2x[-2\sin (x+60)\sin (x-60)]$

$=-4\sin ^2x(\cos 2x-\cos 120^0)$

$=-4\sin ^2x(\cos 2x+\frac{1}{2})=-2(1-\cos 2x)(\cos 2x+\frac{1}{2})$

$=(\cos 2x-1)(2\cos 2x+1)=2\cos ^22x-1-\cos 2x$

$=\cos ^22x-\sin ^22x-\cos 2x=\cos 4x-\cos 2x$ (đpcm)

12 tháng 7 2016

mình làm đc rồi nhé!!! tks m.n :)))

 

23 tháng 2 2019

X^2 + 2( m+1) X - m+3 =0

ta có 

( m + 1 ) + m-3 = 0

m^2 + 3m -2 = 0

m1 =  \(\frac{-3\sqrt{17}}{2}\)

m2 = \(\frac{-3-\sqrt{17}}{2}\)

23 tháng 2 2019

chắc ko bạn

NV
19 tháng 6 2020

Đúng như bạn viết vế trái là thế này:

\(\left(\frac{tan^2x}{1+tan^2x}\right)\left(\frac{1+cot^2x}{cotx}\right)=\left(\frac{1}{\frac{1}{tan^2x}+1}\right)\left(\frac{1+cot^2x}{cotx}\right)\)

\(=\left(\frac{1}{cot^2x+1}\right)\left(\frac{1+cot^2x}{cotx}\right)=\frac{1}{cotx}=tanx\)

Còn vế phải sẽ ra thế này:

\(\frac{1+tan^4x}{tan^2x+cot^2x}=\frac{1+tan^4x}{tan^2x+\frac{1}{tan^2x}}=\frac{tan^2x\left(1+tan^4x\right)}{tan^4x+1}=tan^2x\)

Hai vế ra kết quả khác nhau nên chắc bạn ghi sai đề :)

18 tháng 6 2016

cái j zị

18 tháng 6 2016

đề bị sao r đó

21 tháng 10 2016

dùng máy tính bỏ túi fx-570es plus là ra ngay

 

17 tháng 2 2017

Bài giải đã giải thích rồi mà......Với 0<t<1 =>\(\left\{\begin{matrix}t^3>0\\1-t>0\end{matrix}\right.\) tích hai số dương => phải dương

Câu 1: 

a: =(1+2-3-4)+(5+6-7-8)+...+(2013+2014-2015-2016)

=(-4)+(-4)+...+(-4)

=-4x504=-2016

b: \(B=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{195}{196}=\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot13\cdot15}{2\cdot3\cdot...\cdot14\cdot2\cdot3\cdot...\cdot14}=\dfrac{15}{14\cdot2}=\dfrac{15}{28}\)