K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\frac{1}{2}x-\frac{1}{2}\right)\)

\(A=2\left[x^2+2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{4}\)

Vậy Amin = -9/8 khi và chỉ khi x = -1/4

b) \(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2\cdot2x\cdot y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Rightarrow}}x=y=0\)

Vậy Bmin = 1 khi và chỉ khi x = y = 0

2 tháng 1 2017

Bạn chép thiếu đề à??

2 tháng 1 2017

2x2 + 2y2 + 2xy - 6y + 21

= (x2 + 2xy + y2) - 2(x + y) + 1 + (x2 + 2x + 1) + (y2 - 4y + 4) + 15

= (x + y)2 - 2(x + y) + 1 + (x + 1)2 + (y - 2)2 + 15

= (x + y - 1)2 + (x + 1)2 + (y - 2)2 + 15 \(\ge15\)

Vậy GTNN là 15 đạt được khi x = - 1, y = 2

4 tháng 10 2018

mk lm mẫu cho bạn 1 phần nhé

a) \(A=3x^2+y^2+10x-2xy+26\)

\(=\left(x^2-2xy+y^2\right)+2\left(x^2+5x+6,25\right)+13,5\)

\(=\left(x-y\right)^2+2\left(x+2,5\right)^2+13,5\ge13,5\)

Dấu "=" xảy ra <=>  \(x=y=-2,5\)

Vậy MIN A = 13,5  khi  x = y = - 2,5

4 tháng 10 2018

Cảm ơn Đường Quỳnh Giang nhiều nhé😊

12 tháng 1 2017

\(A=2x^2+y^2+2xy-6x-2y+10\)

\(=\left(\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\right)+\left(x^2-4x+4\right)+5\)

\(=\left(x+y-1\right)^2+\left(x-2\right)^2+5\ge5\)

Vậy GTNN là A = 5 khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)