Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có = 22 +2.2 +4 = 12.
Vì nên hàm số y = g(x) gián đoạn tại x0 = 2.
b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12
\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).
a) f(x) liên tục tại x0 = -2
Vì \(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)=25\)
b) Có: \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)=\lim\limits_{x\rightarrow\frac{1}{2}}\frac{\left(2x-1\right)\left(2x+1\right)}{2x-1}=\lim\limits_{x\rightarrow\frac{1}{2}}\left(2x+1\right)=2\)
mà \(f\left(\frac{1}{2}\right)=3\)
=> \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)\ne f\left(\frac{1}{2}\right)\)
=> f(x) gián đoạn tại x0 = 1/2
c) \(\lim\limits_{x\rightarrow2-}f\left(x\right)=\lim\limits_{x\rightarrow2-}=\lim\limits_{x\rightarrow2-}\left(2x^2+x-1\right)=9\)
\(f\left(2\right)=3.2-5=1\)
Vì \(\lim\limits_{x\rightarrow2-}f\left(x\right)\ne f\left(2\right)\)
nên f(x) gián đoạn tại x0 = 2
\(\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}\frac{x^2-x-6}{x\left(x-3\right)}=\frac{-6}{0.-3}=+\infty\)
\(\Rightarrow\) Không tồn tại m để hàm số liên tục tại \(x=0\)
\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\frac{x^2-x-6}{x\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{\left(x+2\right)\left(x-3\right)}{x\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{x+2}{x}=\frac{5}{3}\)
\(\Rightarrow\) Để hàm số liên tục tại \(x=3\) thì \(\lim\limits_{x\rightarrow3}f\left(x\right)=f\left(3\right)\Leftrightarrow n=\frac{5}{3}\)
\(\lim\limits_{x\rightarrow-3}f\left(x\right)=\lim\limits_{x\rightarrow-3}\dfrac{x^2+3x}{x+3}\)
\(=\lim\limits_{x\rightarrow-3}\dfrac{x\left(x+3\right)}{x+3}=\lim\limits_{x\rightarrow-3}x=-3\)
\(f\left(-3\right)=-6-\left(-3\right)=-6+3=-3\)
Vậy: \(\lim\limits_{x\rightarrow-3}f\left(x\right)=f\left(-3\right)\)
=>Hàm số liên tục tại x=-3