K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2023

Để xét tính bị chặn của dãy số un = -3n, ta cần xem giới hạn của dãy này khi n tiến đến vô cùng.

Khi n tiến đến vô cùng, giá trị của un cũng tiến đến vô cùng âm. Vì vậy, dãy số này không có giới hạn và không bị chặn.

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Lời giải:

Với  mọi $n\in\mathbb{N}^*$ thì $u_n=\frac{-3}{n}<0$ nên $u_n$ bị chặn trên bởi $0$

Vì $\frac{-3}{n}+6=\frac{3(2n-1)}{n}>0$ với mọi $n\in\mathbb{N}^*$
$\Rightarrow \frac{-3}{n}> -6$

Vậy $\frac{-3}{n} bị chặn dưới bởi $-6$

Nghĩa là dãy $(u_n)$ bị chặn. 

 

9 tháng 4 2017

Xét hiệu:

un+1−un=(n+1+1n+1)−(n+1n)=1+1n+1−1n=n2+n−1n(n+1)>0,∀n∈N∗un+1−un=(n+1+1n+1)−(n+1n)=1+1n+1−1n=n2+n−1n(n+1)>0,∀n∈N∗

Suy ra: un là dãy số tăng (1)

Mặt khác: un=n+1n≥2√n.1n=2∀n∈N∗un=n+1n≥2n.1n=2∀n∈N∗

Nên un là dãy số bị chặn dưới (2)

Ta thấy khi n càng lớn thì un càng lớn nên un là dãy số không bị chặn (3)

Từ (1), (2), (3) ta có un là dãy số tăng và bị chặn dưới.

b) Ta có:

u1 = (-1)0.sin1 = sin 1 > 0

u2=(−1)1.sin12=−sin12<0u3=(−1)2.sin13=sin13>0u2=(−1)1.sin⁡12=−sin⁡12<0u3=(−1)2.sin⁡13=sin⁡13>0

⇒ u1 > u2 và u2 < u3

Vậy un là dãy số tăng không đơn điệu.

Ta lại có:

|un|=|(−1)n−1.sin1n|=|sin1n|≤1⇔−1≤un≤1|un|=|(−1)n−1.sin⁡1n|=|sin⁡1n|≤1⇔−1≤un≤1

Vậy un là dãy số bị chặn và không đơn điệu.

c) Ta có:

un=√n+1−√n=n+1−n√n+1+√n=1√n+1+√nun=n+1−n=n+1−nn+1+n=1n+1+n

Xét hiệu:

un+1−un=1√(n+1)+1+√n+1−1√n+1+√n=1√n+2+√n+1−1√n+1+√nun+1−un=1(n+1)+1+n+1−1n+1+n=1n+2+n+1−1n+1+n

Ta có:

{√n+2>√n+1√n+1>√n⇒√n+2+√n+1>√n+1+√n{n+2>n+1n+1>n⇒n+2+n+1>n+1+n

⇒1√n+2+√n+1<1√n+1+√n⇒un+1−un<0⇒1n+2+n+1<1n+1+n⇒un+1−un<0

⇒ un là dãy số giảm (1)

Mặt khác:

un=1√n+1+√n>0,∀n∈N∗un=1n+1+n>0,∀n∈N∗

Suy ra: un là dãy số bị chặn dưới (2)

Ta lại có: với n ≥ 1 thì √n+1+√n≥√2+1n+1+n≥2+1

Nên un=1√n+1+√n≤1√2+1un=1n+1+n≤12+1

Suy ra: un là dãy số bị chặn trên (3)

Từ (1), (2) và (3) ta có: un là dãy số giảm và bị chặn



26 tháng 5 2017

a)
Xét hiệu
\(u_{n+1}-u_n=\left(n+1+\dfrac{1}{n+1}\right)-\left(n+\dfrac{1}{n}\right)\)\(=1+\dfrac{1}{n+1}-\dfrac{1}{n}=1-\dfrac{1}{n\left(n+1\right)}=\dfrac{n^2+n-1}{n\left(n+1\right)}>0\) (Với mọi \(n\in N^{\circledast}\) ).
Suy ra: \(u_{n+1}>u_n\) nên \(\left(u_n\right)\) là dãy số tăng.
Mặt khác: \(u_n\ge2\sqrt{n.\dfrac{1}{n}}=2\) nên \(\left(u_n\right)\) là dãy số bị chặn dưới bởi 2.
Mặt khác n càng tăng thì \(u_n\) càng lớn theo giá trị của \(n\) nên \(\left(u_n\right)\) là dãy số không bị chặn trên.
b) \(u_1=\left(-1\right)^{1-1}.sin1=sin1>0\).
\(u_2=\left(-1\right)^{2-1}sin\dfrac{1}{2}=-sin\dfrac{1}{2}< 0\).
\(u_3=\left(-1\right)^{3-1}.sin\dfrac{1}{3}=sin\dfrac{1}{3}>0\).
Ta thấy \(u_1>u_2\)\(u_2< u_3\) nên \(\left(u_n\right)\) là dãy số không tăng và không giảm.
\(\left|u_n\right|=\left|\left(-1\right)^{n-1}sin\dfrac{1}{n}\right|\le\left|\left(-1\right)^{n-1}\right|=1\).
Suy ra: \(-1\le u_n\le1\) nên \(\left(u_n\right)\) bị chặn trên bởi \(1\) và chặn dưới bởi \(-1\).
c)
\(u_n=\sqrt{n+1}-\sqrt{n}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\)
Xét hiệu:
\(u_{n+1}-u_n=\dfrac{1}{\sqrt{n+2}+\sqrt{n+1}}-\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\)
\(=\dfrac{\sqrt{n}-\sqrt{n+2}}{\left(\sqrt{n+2}+\sqrt{n+1}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\dfrac{-2}{\left(\sqrt{n+2}+\sqrt{n+1}\right)\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}+\sqrt{n+2}\right)}< 0\)
Vậy \(\left(u_n\right)\) là dãy số giảm.
\(u_n=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}>0\) nên \(\left(u_n\right)\) là dãy số bị chặn dưới bởi 0.
\(u_n=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}< \dfrac{1}{\sqrt{1+0}+\sqrt{0}}=1\) nên \(\left(u_n\right)\) là dãy số bị chặn trên bởi 1.

19 tháng 5 2017

a) Bị chặn trên vì \(u_n\le1,\forall n\in\mathbb{N}^{\circledast}\)

b) Bị chặn dưới vì \(u_n\ge2,\forall n\in\mathbb{N}^{\circledast}\)

c) Bị chặn dưới vì \(u_n\ge\sqrt{3},\forall n\in\mathbb{N}^{\circledast}\)

d) Bị chặn vì \(0< u_n\le\dfrac{1}{2},\forall n\in\mathbb{N}^{\circledast}\)

19 tháng 11 2023

n>0

=>\(n+1>0;n^2+1>0\)

=>\(u_n=\dfrac{n+1}{\sqrt{n^2+1}}>0\)

\(u_n=\dfrac{n+1}{\sqrt{n^2+1}}< =\dfrac{n+1}{n}=1+\dfrac{1}{n}=1\)

=>\(0< u_n< =1\)

=>(Un) là dãy số bị chặn 

9 tháng 4 2017
a) Dãy số bị chặn dưới vì un = 2n2 -1 ≥ 1 với mọi n ε N* và không bị chặn trên vì với số M dương lớn bất kì, ta có 2n2 -1 > M <=> n > .
tức là luôn tồn tại n ≥ + 1 để 2 - 1 > M.
b) Dễ thấy un > 0 với mọi n ε N*
Mặt khác, vì n ≥ 1 nên n2 ≥ 1 và 2n ≥ 2.
Do đó n(n + 2) = n2 + 2n ≥ 3, suy ra .
Vậy dãy số bị chặn 0 < un với mọi n ε N*
c) Vì n ≥ 1 nên 2n2 - 1 > 0, suy ra > 0
Mặt khác n2 ≥ 1 nên 2n2 ≥ 2 hay 2n2 - 1≥ 1, suy ra ≤ 1.
Vậy 0 < un ≤ 1, với mọi n ε N* , tức dãy số bị chặn.
d) Ta có: sinn + cosn = √2sin(n + ), với mọi n. Do đó:
-√2 ≤ sinn + cosn ≤ √2 với mọi n ε N*
Vậy -√2 < un < √2, với mọi n ε N* .



a:

\(0< =cos\left(\dfrac{\Omega}{2n}\right)< =1;n\in Z^+\)

Khi n chẵn thì \(\left(-1\right)^n=1\)

=>\(u_n=cos\left(\dfrac{\Omega}{2n}\right)\)

=>\(0< =u_n< =1\)

=>\(\left(u_n\right)\) bị chặn ở khoảng [0;1]

Khi n lẻ thì \(\left(-1\right)^n=-1\)

=>\(u_n=-cos\left(\dfrac{\Omega}{2n}\right)\)

\(0< =cos\left(\dfrac{\Omega}{2n}\right)< =1\)

=>\(0>=-cos\left(\dfrac{\Omega}{2n}\right)>=-1\)

=>\(0>=u_n>=-1\)

=>\(\left(u_n\right)\) bị chặn ở khoảng [-1;0]

 

b: \(-1< =\dfrac{1}{5^n}< =0\)

=>\(-\sqrt{2}< =\dfrac{\sqrt{2}}{5^n}< =0\)

=>\(-\sqrt{2}< =t_n< =0\)

Vậy: Dãy số bị chặn ở khoảng \(\left[-\sqrt{2};0\right]\)