K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(f(x) = 3{x^2} - 4x + 1\)có \(\Delta  = 4\)>0, \(a = 3 > 0\)và có hai nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{1}{3}\). Do đó ta có bảng xét dấu \(f(x)\):

Suy ra \(f(x) > 0\)với mọi \(x \in \left( { - \infty ;\frac{1}{3}} \right) \cup \left( {1; + \infty } \right)\) và \(f(x) < 0\)với mọi \(x \in \left( {\frac{1}{3};1} \right)\)

 

b) \(g(x) = {x^2} + 2x + 1\) có \(\Delta  = 0\) và a=1>0 nên \(g(x)\)có nghiệm kép \(x =  - 1\) và \(g(x) > 0\)với \(x \ne  - 1\)

c) \(h(x) =  - {x^2} + 3x - 2\) có \(\Delta  = 1 > 0\), \(a =  - 1\)

Suy ra \(h(x) > 0\) với mọi \(x \in (1;2)\)và \(h(x) < 0\)với mọi \(x \in ( - \infty ;1) \cup (2; + \infty )\)

d) \(k(x) =  - {x^2} + x - 1\) có \(\Delta  =  - 3\), a=-1

Suy ra \( k(x) >0 \)với mọi \(x \in \mathbb{R}\)

5 tháng 4 2020

§5. Dấu của tam thức bậc hai

5 tháng 4 2020

§5. Dấu của tam thức bậc hai

5 tháng 4 2017

a)

\(A=2x^2+5x+2\) \(\Delta=25-16=9\)

Nếu \(\left[{}\begin{matrix}x=-2\\x=\dfrac{-1}{4}\end{matrix}\right.\) \(\Rightarrow A=0\)

nếu \(\left[{}\begin{matrix}x< -2\\x>-\dfrac{1}{4}\end{matrix}\right.\)\(\Rightarrow A>0\)

Nếu \(-2< x< \dfrac{1}{4}\Rightarrow A< 0\)

5 tháng 4 2017

b) \(B=4x^2-3x-1\) {a+b+c=0}

Nếu x={1,-1/4} => B=0

Nếu x<-1/4 hoặc x>1 thì B>0

Nếu -1/4<x<1 thì B<0

c)

\(C=-3x^2+5x+1\) \(\Delta=25+12=37\)

\(\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{6}\\x=\dfrac{5-\sqrt{37}}{6}\end{matrix}\right.\) \(\Rightarrow C=0\)

\(\dfrac{5-\sqrt{37}}{6}< x< \dfrac{5+\sqrt{37}}{6}\Rightarrow C>0\)

\(\left[{}\begin{matrix}x>\dfrac{5+\sqrt{37}}{6}\\x< \dfrac{5-\sqrt{37}}{6}\end{matrix}\right.\) \(\Rightarrow C< 0\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có \(a = 3 > 0,b =  - 4,c = 1\)

\(\Delta ' = {\left( { - 2} \right)^2} - 3.1 = 1 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\). Khi đó:

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \infty ;\frac{1}{3}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( {\frac{1}{3};1} \right)\)

b) Ta có \(a = 9 > 0,b = 6,c = 1\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x =  - \frac{1}{3}\). Khi đó:

\(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\)

c) Ta có \(a = 2 > 0,b =  - 3,c = 10\)

\(\Delta  = {\left( { - 3} \right)^2} - 4.2.10 =  - 71 < 0\)

\( \Rightarrow \)\(f\left( x \right) > 0\forall x \in \mathbb{R}\)

d) Ta có \(a =  - 5 < 0,b = 2,c = 3\)

\(\Delta ' = {1^2} - \left( { - 5} \right).3 = 16 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{{ - 3}}{5},x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( { - \infty ; - \frac{3}{5}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \frac{3}{5};1} \right)\)

e) Ta có \(a =  - 4 < 0,b = 8c =  - 4\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ 1 \right\}\)

g) Ta có \(a =  - 3 < 0,b = 3,c =  - 1\)

\(\Delta  = {3^2} - 4.\left( { - 3} \right).\left( { - 1} \right) =  - 3 < 0\)

\( \Rightarrow \)\(f\left( x \right) < 0\forall x \in \mathbb{R}\)

7 tháng 4 2017

a)

\(\Delta=9-20=-11\) vô nghiêm

=> A luôn dương (+) với mọi x thuộc R

b) {a-b+c=0}

B= 0 khi x= -1 hoặc x= 5/2

B>0 khi -1<x<5/2

B<0 khi x<-1 hoặc x>/52

c) x^2 +12x+36 =(x+6)^2

C = 0 khi x =-6

C > 0 mọi x khác -6

d)

D = 0 khi x =3/2 hoặc x=-5

D> 0 khi x<-5 hoặc x>3/2

D<0 khi -5<x<3/2

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(f\left( x \right) = 2{x^2} + 4x + 2\) có \(\Delta  = 0\), có nghiệm kép là \({x_1} = {x_2} =  - 1\)

và \(a = 2 > 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) dương với mọi \(x \ne  - 1\)

b) \(f\left( x \right) =  - 3{x^2} + 2x + 21\) có \(\Delta  = 256 > 0\), hai nghiệm phân biệt là \({x_1} =  - \frac{7}{3};{x_2} = 3\)

và \(a =  - 3 < 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) dương với \(x \in \left( { - \frac{7}{3};3} \right)\) và âm khi \(x \in \left( { - \infty ; - \frac{7}{3}} \right) \cup \left( {3; + \infty } \right)\)

c) \(f\left( x \right) =  - 2{x^2} + x - 2\) có \(\Delta  =  - 15 < 0\), tam thức vô nghiệm

và \(a =  - 2 < 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) âm với mọi \(x \in \mathbb{R}\)

d) \(f\left( x \right) =  - 4x\left( {x + 3} \right) - 9 =  - 4{x^2} - 12x - 9\) có \(\Delta  = 0\), tam thức có nghiệm kép \({x_1} = {x_2} =  - \frac{3}{2}\) và \(a =  - 4 < 0\)

Ta có bảng xét dấu như sau

 

Vậy \(f\left( x \right)\) âm với mọi \(x \ne  - \frac{3}{2}\)

e) \(f\left( x \right) = \left( {2x + 5} \right)\left( {x - 3} \right) = 2{x^2} - x - 15\) có \(\Delta  = 121 > 0\), có hai nghiệm phân biệt \({x_1} =  - \frac{5}{2};{x_2} = 3\) và có \(a = 2 > 0\)

Ta có bảng xét dấu như sau

 

Vậy \(f\left( x \right)\) âm với \(x \in \left( { - \frac{5}{2};3} \right)\) và dương khi \(x \in \left( { - \infty ; - \frac{5}{2}} \right) \cup \left( {3; + \infty } \right)\)

7 tháng 4 2017

a) F(x) = \(-x^2\left(x-1\right)\left(x+2\right)\left(x+2\right)=\left(1-x\right)x^2\left(x+2\right)^2\\ \)

\(\left\{{}\begin{matrix}x^2\ge0\\\left(x+2\right)^2\ge0\end{matrix}\right.\) => dấu biểu thức chỉ phụ thuộc vào thừa số (1-x)

F(x) =0 khi x={-2,0,1}

F(x) > 0 khi x<1 và khác -2 và 0

f(x) <0 khi x> 1

7 tháng 4 2017

Tử f(x) =x^2(x^2-3x+2) =x^2(x-1)(x-2)

tương tự a) dấu của tử phụ thuộc (x-1)(x-2)

Mẫu f(x) =x^2 -x-30 =(x-5)(x+6)

Phần hỗ trợ Lập bảng đây khó thao tác

=> viết bằng hệ {điểm tới hạn xet x={-6,0,1,2,5}

Khi => \(\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)=>f(x) =0

Khi \(\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\) => f(x) không xác định

Khi \(x< -6\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(x\right)>0\)

khi -6<x<1 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0

khi 1<x<2 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)< 0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) >0

khi 2<x<5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)< 0\end{matrix}\right.\) => f(x) <0

khi x>5 \(\Rightarrow\left\{{}\begin{matrix}Tf\left(x\right)>0\\Mf\left(x\right)>0\end{matrix}\right.\) => f(x) >0

7 tháng 4 2017

a) 3x^3 -10x+3 =(3x-1)(x-3)

x -vc 1/3 5/4 3 +vc
3x-1 - 0 + + + + +
x-3 - - - - - 0 +
4x-5 - - - 0 + + +
VT - 0 + 0 - 0 +

Kết luận

VT< 0 {dấu "-"} khi x <1/3 hoắc 5/4<x<3

VT>0 {dấu "+"} khi x 1/3<5/4 hoặc x> 3

VT=0 {không có dấu} khi x={1/3;5/4;3}