K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

\(2018^{2\left(x^2-y+1\right)}=\frac{2x+y}{x^2+2x+1}\)

\(\Leftrightarrow2\left(x^2-y+1\right)=log_{2018}\left(\frac{2x+y}{x^2+2x+1}\right)\)

\(\Leftrightarrow2\left(x^2+2x+1-2x-y\right)=log_{2018}\left(2x+y\right)-log_{2018}\left(x^2+2x+1\right)\)

\(\Leftrightarrow2\left(x^2+2x+1\right)+log_{2018}\left(x^2+2x+1\right)=log_{2018}\left(2x+y\right)+2\left(2x+y\right)\)

Đặt \(f\left(u\right)=log_{2018}u+2u\)

\(\begin{matrix}x^2+2x+1>0\\2x+y>0\end{matrix}\Rightarrow u>0\)

\(f'\left(u\right)=\frac{1}{u.ln2018}+2>0\)

Suy ra hàm số đồng biến

\(\Leftrightarrow f\left(x^2+2x+1\right)=f\left(2x+y\right)\)\(\Leftrightarrow x^2+2x+1=2x+y\) (tính chất hàm đồng biến)

\(\Leftrightarrow y=x^2+1\)

\(P=2y-3x=2x^2-3x+2\)

\(P=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\)

\(P_{min}=\frac{7}{8}\) khi \(x=\frac{3}{4}\)

19 tháng 9 2019

Bài này thì chia 2 vế của giả thiết cho z2 ta thu được:

\(\frac{x}{z}+2.\frac{x}{z}.\frac{y}{z}+\frac{y}{z}=4\Leftrightarrow a+2ab+b=4\)

(đặt \(a=\frac{x}{z};b=\frac{y}{z}\)).Mà ta có: \(4=a+2ab+b\le a+b+\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\ge2\) Lại có:

\(P=\frac{\left(\frac{x}{z}+\frac{y}{z}\right)^2}{\left(\frac{x}{z}+\frac{y}{z}\right)^2+\left(\frac{x}{z}+\frac{y}{z}\right)}+\frac{3}{2}.\frac{1}{\left(\frac{x}{z}+\frac{y}{z}+1\right)^2}\) (chia lần lượt cả tử và mẫu của mỗi phân thức cho z2)

\(=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}+\frac{3}{2\left(a+b+1\right)^2}\).. Tiếp tục đặt \(t=a+b\ge2\) thu được:

\(P=\frac{t}{\left(t+1\right)}+\frac{3}{2\left(t+1\right)^2}=\frac{2t\left(t+1\right)+3}{2\left(t+1\right)^2}\)\(=\frac{2t^2+2t+3}{2\left(t+1\right)^2}-\frac{5}{6}+\frac{5}{6}\)

\(=\frac{2\left(t-2\right)^2}{12\left(t+1\right)^2}+\frac{5}{6}\ge\frac{5}{6}\)

Vậy...

P/s: check xem em có tính sai chỗ nào không:v

19 tháng 9 2019

Dấu "=" xảy ra khi nào vậy Khang ? 

NV
17 tháng 8 2020

\(P=\sqrt{\left(1-x\right)^2+y^2}+\sqrt{\left(x+1\right)^2+y^2}+2-y\)

\(P\ge\sqrt{\left(1-x+x+1\right)^2+\left(y+y\right)^2}+2-y\)

\(P\ge\sqrt{4y^2+4}+2-y=2\sqrt{y^2+1}+2-y\)

Xét hàm \(f\left(y\right)=2\sqrt{y^2+1}-y+2\)

\(f'\left(y\right)=\frac{2y}{\sqrt{y^2+1}}-1=0\Leftrightarrow2y=\sqrt{y^2+1}\) (\(y\ge0\))

\(\Leftrightarrow3y^2=1\Rightarrow y=\frac{\sqrt{3}}{3}\)

Từ BBT ta thấy \(f\left(y\right)_{min}=f\left(\frac{\sqrt{3}}{3}\right)=2+\sqrt{3}\)

\(\Rightarrow P_{min}=2+\sqrt{3}\)

NV
1 tháng 3 2021

Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)

\(\Leftrightarrow x^2+2\le3x\)

Hoàn toàn tương tự ta có \(y^2+2\le3y\)

Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)

\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)

Đặt \(a=x+y-1\Rightarrow1\le a\le3\)

\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)

\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)

\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)

\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)

18 tháng 5 2016

Ta có :

\(P=\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\)  (1)

 Do : \(x^2+y^2+z^2\ge xy+yz+zx\), nên từ (1) ta có :

\(P\ge\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\)

\(P\ge\left(\frac{x^2}{2}+\frac{1}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{y}\right)+\left(\frac{z^2}{2}+\frac{1}{z}\right)\)   (2)

Xét hàm số \(f\left(t\right)=\frac{t^2}{2}+\frac{1}{t};t>0\)

 Ta có : \(f'\left(t\right)=t-\frac{1}{t^2}=\frac{t^3-1}{t^2}\)

Lập bảng biến thiên sau :

t f'(t) f(t) 0 1 - + 8 8 + + 3 2

Từ đó suy ra :

            \(f\left(t\right)\ge\frac{3}{2}\) với mọi \(t>0\)

Vì lẽ đó từ (2) ta có : \(P\ge3.\frac{3}{2}\) với mọi \(x,y,z>0\)

Mặt khác khi \(x=y=z\) thì \(P=\frac{9}{2}\) vậy Min \(P=\frac{9}{2}\)

14 tháng 6 2016

ucche

NV
27 tháng 6 2020

\(\Leftrightarrow log_{\frac{1}{3}}xy\le log_{\frac{1}{3}}\left(x+y^2\right)\)

\(\Rightarrow xy\ge x+y^2\) (do \(\frac{1}{3}< 1\))

\(\Rightarrow x\left(y-1\right)\ge y^2\) (\(y-1>0\) do

Nếu \(y\le1\Rightarrow\left\{{}\begin{matrix}VT\le0\\VP>0\end{matrix}\right.\) (vô lý)

\(\Rightarrow y>1\Rightarrow x\ge\frac{y^2}{y-1}\)

\(\Rightarrow P=2x+3y\ge\frac{2y^2}{y-1}+3y=5y+2+\frac{2}{y-1}\)

\(\Rightarrow P\ge5\left(y-1\right)+\frac{2}{y-1}+7\ge2\sqrt{\frac{10\left(y-1\right)}{y-1}}+7=7+2\sqrt{10}\)

\(P_{min}=7+2\sqrt{10}\) khi \(\left\{{}\begin{matrix}y=1+\frac{\sqrt{10}}{5}\\x=\frac{y^2}{y-1}=...\end{matrix}\right.\)

NV
5 tháng 1 2021

\(4=2^x+2^y\ge2\sqrt{2^{x+y}}\Rightarrow2^{x+y}\le4\Rightarrow x+y\le2\)

\(\Rightarrow xy\le1\)

\(P=4x^2y^2+2x^3+2y^3+10xy\)

\(P=4x^2y^2+10xy+2\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)

\(P\le4x^2y^2+10xy+4\left(4-3xy\right)=4x^2y^2-2xy+16\)

Đặt \(xy=t\Rightarrow0< t\le1\)

Xét hàm \(f\left(t\right)=4t^2-2t+16\) trên \((0;1]\)

\(\Rightarrow...\)

1 tháng 4 2017

Từ định nghĩa bằng nhau của hai số phức, ta có:

a) ;

b) ;

c) .