Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)BC^2=9^2 + 12^2=225
BC=15 cm
AM là trung tuyến ứng với cạnh huyền nên = BC/2
AM=15:2=7,5 cm
b)tứ giác AKMI là hình chữ nhật vì có 3 góc vuông
c)Xét tam giác vuông ABC có:
BM=CM(gt)
MI // AB (tứ giác AKMI là hình chữ nhật)
=> AI = CI (đường trung bình)
Xét tứ giác AMCN có :
MI = NI (gt)
AI = CI (chứng minh trên)
=> tứ giác AMCN là hình bình hành (1)
Mặt khác trong tam giác ABC, AM là trung tuyến ứng với cạnh huyền BC
=>AM = BC/2 = CM (2)
từ (1) và (2) => tứ giác AMCN là hình thoi (đpcm)
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của BA
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{BC}{2}\)
Ta có: DE//BC
M\(\in\)BC
Do đó: BM//DE
Ta có: \(DE=\dfrac{BC}{2}\)
\(CM=MB=\dfrac{CB}{2}\)
Do đó: DE=CM=MB
Xét tứ giác BDEM có
DE//MB
DE=MB
Do đó: BDEM là hình bình hành
c: Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=\dfrac{AC}{2}\left(1\right)\)
Xét ΔABC có
M,D lần lượt là trung điểm của BC,BA
=>MD là đường trung bình của ΔABC
=>\(MD=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MD=HE
Ta có: ED//BC
M,H\(\in\)BC
DO đó: ED//MH
Xét tứ giác DHME có
MH//DE
nên DHME là hình thang
Hình thang DHME có DM=HE
nên DHME là hình thang cân
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
A B C N H M P O
a,b ko khó nên bạn tự giải nha
c)Gọi O la giao điểm của NP và AM
=> O là trung điểm của AM và OM=OA=ON=OP
Xét tam giác AHM vuông tại H
Có O là td của AM (cmt)
=>HO la đường trung tuyến ứng với cạnh huyền AM
=>HO=OA=OM
mà OM=OA=OP=ON (cmt)
=>HO=OP=ON=1/2NP
Xét tam giác NHP
có HO=OP=ON=1/2NP(cmt)
=>tam giác NHP vuông tại H