Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2007}-\sqrt{x+2008}}{-1}\)
\(=-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{x+2007}+\sqrt{x+2008}\)\(=-\sqrt{x}+\sqrt{x+2008}\)
\(C=-\sqrt{\sqrt[2007]{2008}}+\sqrt{\sqrt[2007]{2008}+2008}\)
Ta có : \(\sqrt{2008+2\sqrt{2007}}=\sqrt{2007+2\sqrt{2007}+1}=\sqrt{\left(\sqrt{2007}+1\right)^2}=\sqrt{2007}+1\)
\(\sqrt{\left(1-\sqrt{2007}\right)^2}=\sqrt{2007}-1\)
Suy ra \(C=2\sqrt{2007}\)
\(1a.A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\) ( x ≥ 0 ; x # 9 )
\(b.A>\dfrac{1}{3}\) ⇔ \(\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\text{⇔}\dfrac{3-\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\)
⇔ \(3-\sqrt{x}>0\)
⇔ \(x< 9\)
Kết hợp ĐKXĐ , ta có : \(0\text{≤}x< 9\)
\(c.\) Tìm GTLN chứ ?
\(A=\dfrac{2}{\sqrt{x}+3}\text{≤}\dfrac{2}{3}\)
⇒ \(A_{MAX}=\dfrac{2}{3}."="x=0\left(TM\right)\)
\(a.VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9=VP\)Vậy , đẳng thức được chứng minh .
\(b.VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}=VP\)Vậy , đẳng thức được chứng minh .
\(c.VT=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}=8=VP\)Vậy , đẳng thức được chứng minh .
\(\sqrt{2007+2008\sqrt{1-x}}=1+\sqrt{2007-2008\sqrt{1-x}}\left(x\le1\right)\)
\(\Leftrightarrow2007+2008\sqrt{1-x}=1+2007-2008\sqrt{1-x}+2\sqrt{2007-2008\sqrt{1-x}}\)
\(\Leftrightarrow2.2008\sqrt{1-x}=2\sqrt{2007-2008\sqrt{1-x}}+1\)
Đặt \(2008\sqrt{1-x}=y\ge0\)
Suy ra phương trình (1) tương đương với : \(2y-1=2\sqrt{2007-y}\Leftrightarrow4y^2-4y+1=4\left(2007-y\right)\Leftrightarrow4y^2=8027\Rightarrow y=\frac{\sqrt{8027}}{2}\)(nhận) hoặc \(y=-\frac{\sqrt{8027}}{2}\)(loại)
Từ đó suy ra \(x=\frac{16120229}{16128256}\)
Vậy \(x=\frac{16120229}{16128256}\)là nghiệm của phương trình.
Bài này nếu mình nhớ không nhầm thì nằm trong đề thi Toán Casio đúng không bạn? :))
ĐK : x > 1\(P\sqrt{x}=\dfrac{x}{\sqrt{x}-1}=\dfrac{x-1+1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)Áp dụng BĐT Cauchy , ta được :
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\) ≥ \(2\sqrt{\left(\sqrt{x}-1\right).\dfrac{1}{\sqrt{x}-1}}=2\)
⇔ \(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\) + 2 ≥ 2 + 2 = 4
⇒ \(P\sqrt{x}_{Min}=4\) ⇔ \(\sqrt{x}-1=\dfrac{1}{\sqrt{x}-1}\) ⇔ \(x=4\)
Sorry thiếu với \(\forall m\inℝ\)
với cả : P(x) = ax2 + bx +c , a khác 0