Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+5x+a}{2x^2-3x+2}\ge-1\Leftrightarrow\frac{x^2+5x+a}{2x^2-3x+2}+1\ge0\Leftrightarrow\frac{3x^2+2x+a+2}{2x^2-3x+2}\ge0\)
\(\Leftrightarrow3x^2+2x+a+2\ge0\) \(\forall x\) (do \(2x^2-3x+2=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}>0\))
\(\Rightarrow\Delta'=1-3\left(a+2\right)=-5-3a\le0\Rightarrow a\ge\frac{-5}{3}\) (1)
Lại có: \(\frac{x^2+5x+a}{2x^2-3x+2}\le7\Leftrightarrow\frac{x^2+5x+a}{2x^2-3x+2}-7\le0\Leftrightarrow\frac{-13x^2+26x+a-14}{2x^2-3x+2}\le0\)
\(\Leftrightarrow-13x^2+26x+a-14\le0\) \(\forall x\)
\(\Rightarrow\Delta'=169+13\left(a-14\right)\le0\Rightarrow a\le-1\) (2)
Kết hợp (1) và (2) ta được: \(\frac{-5}{3}\le a\le-1\)
Bài 1:
a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.
Mệnh đề A sai.
b)
\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.
c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.
d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)
\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)
\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$
\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)
Mệnh đề đúng.
ĐK: \(m\ge-1\)
Có: \(0\le x\le4\)
\(\Rightarrow\)\(\hept{\begin{cases}0\le x^2\le16\\-12\le-3x\le0\end{cases}}\Rightarrow-12\le x^2-3x\le16\)
Mà \(\left|x^2-3x+2\right|\le2m+2\)\(\Leftrightarrow\)\(-2m-4\le x^2-3x\le2m\)
\(\Rightarrow\)\(\hept{\begin{cases}-2m-4\le-12\\2m\ge16\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ge4\\m\ge8\end{cases}}\)
kết hợp với đk \(\Rightarrow\)\(m\ge8\)
Do \(a=-1< 0\) nên để điều kiện bài toán thỏa mãn thì:
\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-2m+1>0\\x_1\le0< 1\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-f\left(0\right)\le0\\-f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-2m\le0\\0\le0\end{matrix}\right.\)
\(\Rightarrow m\ge\frac{1}{2}\)
cô ơi rk đề cho f(x)>0 mà khi thay (0;1) lai thành f(x)<= vậy ạ
b/ \(\Leftrightarrow-4< \frac{-2x^2-mx+4}{x^2-x+1}< 6\)
Do \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x nên BPT tương đương:
\(-4\left(x^2-x+1\right)< -2x^2-mx+4< 6\left(x^2-x+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(m+4\right)x+8>0\\8x^2+\left(m-6\right)x+2>0\end{matrix}\right.\)
Cả 2 BPT đều đúng với mọi x khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta_1=\left(m+4\right)^2-64< 0\\\Delta_2=\left(m-6\right)^2-64< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+8m-48< 0\\m^2-12m-28< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-12< m< 4\\-2< m< 14\end{matrix}\right.\) \(\Rightarrow-2< m< 4\)
c/ Do \(2x^2-3x+2=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}>0\) với mọi x, BPT tương đương:
\(-\left(2x^2-3x+2\right)\le x^2+5x+m< 7\left(2x^2-3x+2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+5x+m\ge-2x^2+3x-2\\14x^2-21x+14>x^2+5x+m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+2x+m+2\ge0\\13x^2-26x-m+14>0\end{matrix}\right.\)
Để 2 BPT đều đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}4-12\left(m+2\right)\le0\\13^2-13\left(-m+14\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-20\le12m\\-13+13m< 0\end{matrix}\right.\) \(\Rightarrow-\frac{5}{3}\le m< 1\)
\(-1\le\dfrac{x^2+5x+m}{2x^2-3x+2}< 7\) ∀x ∈ R
ta thấy \(2x^2-3x+2\) (*)vô nghiệm => * luôn dương ( cx dấu vs a)
\(\left\{{}\begin{matrix}\dfrac{x^2+5x+m}{2x^2-3x+2}+1\ge0\\\dfrac{x^2+5x+m}{2x^2-3x+2}-7< 0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x^{2^{ }}+2x+m+2\ge0\\-13x^2+26x+m-14< 0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\\\left[{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\end{matrix}\right.\)
.....
tới đây bạn tự thế số vào làm tiếp nhé
Đ\Á :[\(\dfrac{-5}{3}\);1)