Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta sử dụng các công thức hằng đẳng thức đáng nhớ:
\(A=x^3+y^3+z^3+kxyz=(x+y)^3-3xy(x+y)+z^3+kxyz\)
\(=(x+y)^3+z^3-3xy(x+y)+kxyz\)
\(=(x+y+z)^3-3(x+y)z^2-3(x+y)^2z-3xy(x+y)+kxyz\)
\(=(x+y+z)^3-3(x+y)z(z+x+y)-3xy(x+y+z)+(k+3)xyz\)
\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+(k+3)xyz\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(k+3)xyz\)
Vậy để \(A\vdots x+y+z\) thì \((k+3)xyz\vdots x+y+z, \forall x,y,z\)
Điều này xảy ra chỉ khi \(k+3=0\Leftrightarrow k=-3\)
Ta có: x3+y3+z3+kxyz
=x3+3x2y+3xy2+y3-3x2y-3xy2+kxyz+z3
=(x+y)3+z3-3xy(x+y)+kxyz
=(x+y+z)[(x+y)2+(x+y)z+z2]-3xy(x+y)+kxyz
ta có: (x+y+z)[(x+y]2+(x+y)z+z2] chia hết cho x+y+z.
Để A chia hết cho x+y+z thì -3xy(x+y)+kxyz phải chia hết cho x+y+z
suy ra: k=-3 thì -3xy(x+y)-3xyz=-3xy(x+y+z);
vậy k=-3 thì a chia hết cho x+y+z
Câu hỏi của vuighe123_oribe - Toán lớp 8 - Học toán với OnlineMath
đặt A=x3+y3+z3+kxyz : (x+y+z) ta được
A=(x+y+z).[x2+y2+z2-xy-xz-yz-yz(k+2)]-yz(x+z)(k+3)
để phép chia ko dư thì
-yz(x+z)(k+3)=0 (với mọi x,y,z)
do đó k+3=0 <=>k=-3
đặt phép chia ,để phép chia là phép chia hết thì dư=0 .....=>m=-3
hoặc có thể dễ nhận thấy m=-3 sẽ có hđt x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-zx) chia hết cho (x+y+z)
- Quẵng đường viên bi A dơi trong 4s là: \(S_{A\left(4s\right)}=\frac{1}{2}\cdot10\cdot4^2=80\left(m\right)\)
- Vì sau khi bi A rơi được 4 giây thì khoảng cách giữa hai viên bi là 35m nên quãng đường bi B dơi là: \(S_{B\left(4-\Delta t\right)}=80-35=45\left(m\right)\)
- Suy ra: \(S_{B\left(4-\Delta t\right)}=\frac{1}{2}\cdot10\cdot\left(4-\Delta t\right)^2=45\\ \Rightarrow\left(4-\Delta t\right)^2=9\\ \Rightarrow4-\Delta t=3\Rightarrow\Delta t=1\left(s\right)\)
Bài 1 : Ta có :
x^3-x^2-7x-a x-3 x^2 x^3-3x^2 2x^2-7x-a + 2x 2x^2 -6x -x - a - 1 -x + 3
Để \(x^3-x^2-7x-a\) chia hết cho x-3 thì :
-x - a = - x + 3
<=> -x + x - a = 3
<=> a = - 3
Vậy GT của a là - 3
Bài 2 :
a) \(x^2-2xy-9z^2+y^2\)
= \(\left(x^2-2xy+y^2\right)-9z^2\)
= \(\left(x-y\right)^2-\left(3z\right)^2\)
= \(\left(x-y-3z\right)\left(x-y+3z\right)\) (1)
Thay x = 6 ; y=-4 ; z= 30 vào BT (1) ta được :
\(\left(x-y-3z\right)\left(x-y+3z\right)=\left(6+4-3.30\right)\left(6+4+3.30\right)\) = (-80) .100 = -8000
Vậy tại x = 6 ; y=-4 ; z=30 thì GT của BT (1) là -8000
b) \(\left(x^3-y^3\right):\left(x^2+xy+y^2\right)\)
= \(\left(x-y\right)\left(x^2+xy+y^2\right):\left(x^2+xy+y^2\right)\)
= ( x- y ) (2)
Thay x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) vào biểu thức (2) ta được :
\(\left(x-y\right)=\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{1}{3}\)
Vậy tại x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) thì GT của BT (2) là \(\dfrac{1}{3}\)
gọi thương khi chia đa thức A cho x + y + z là Q, ta có :
x3 + y3 + z3 + kxyz = ( x + y + z ) . Q
đẳng thức trên đúng với mọi x,y,z nên với x = 1, y = 1, z = -2 ta có :
1 + 1 + ( -2 )3 + k . ( -2 ) = ( 1 + 1 - 2 ) . Q \(\Rightarrow\)-6 - 2k = 0 \(\Rightarrow\)k = -3
với k = -3 ta có : x3 + y3 + z3 - 3xyz chia hết cho x + y + z ( thương là x2 + y2 + z2 - xy - yz - zx )
Vậy ...
gọi thương khi chia đa thức A cho x + y + z là Q ta có
x^3 =y^3+z^3 +kxyzz =(x + y +z) .Q
đẳng thức trên có thể đúng với các chữ như x,y,z nên x = 1y , 1z = -2
nên :
=>k = - 3 ta cs : x^ +y^3 +z^3 - 3xyz chia hết cho x =y +z (thườn là x2 + y2 -xy - z - zx)
Xem lại đề