K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)      Đa thức có 5 hạng tử là: \({x^2}y; - 3xy;5{x^2}{y^2};0,5x; - 4\)

Xét hạng tử \({x^2}y\) có hệ số là 1, bậc của x là 2, bậc của y là 1 => bậc là 2+1=3.

Xét hạng tử \( - 3xy\) có hệ số là -3,  bậc của x là 1, bậc của y là 1  => bậc là 1+1=2.

Xét hạng tử \(5{x^2}{y^2}\) có hệ số là 5, bậc của x là 2, bậc của y là 2  => bậc là 2+2=4.

Xét hạng tử \(0,5x\) có hệ số là 0,5, bậc của x là 1 => bậc là 1.

Xét hạng tử -4 có hệ số là -4, bậc là 0.

b)      Đa thức có 4 hạng tử là \(x\sqrt 2 ; - 2x{y^3};{y^3}; - 7{x^3}y\)

Xét hạng tử \(x\sqrt 2 \) có hệ số là \(\sqrt 2 \), bậc của x là 1 => bậc là 1.

Xét hạng tử \( - 2x{y^3}\) có hệ số là -2, bậc của x là 1, bậc của y là 3  => bậc là 1+3=4.

Xét hạng tử \({y^3}\) có hệ số là 1, bậc của y là 3  => bậc là 3.

Xét hạng tử \( - 7{x^3}y\) có hệ số là -7, bậc của x là 3, bậc của y là 1  => bậc là 3+1=4.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)       

\(\begin{array}{l}N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\\ = \left( {5{y^2}{z^2} - 2{y^2}{z^2}} \right) + \left( { - 2x{y^2}z + x{y^2}z} \right) + \left( {\dfrac{1}{3}{x^4} + \dfrac{2}{3}{x^4}} \right)\\ = 3{y^2}{z^2} - x{y^2}z + {x^4}\end{array}\)

b)      Đa thức có 3 hạng tử là: \(3{y^2}{z^2}; - x{y^2}z;{x^4}\)

Xét hạng tử \(3{y^2}{z^2}\) có hệ số là 3, bậc là 2+2=4.

Xét hạng tử \( - x{y^2}z\) có hệ số là -1, bậc là 1+2+1=4.

Xét hạng tử \({x^4}\) có hệ số là 1, bậc là 4.

23 tháng 7 2023

\(a,Q=\left(-2x^3y+7x^2y+3xy\right)+P=\left(-2x^3y+7x^2y+3xy\right)+\left(3x^2y-2xy^2-4xy+2\right)\\ =-2x^3y+7x^2y+3xy+3x^2y-3xy^2-4xy+2\\ =-2x^3y^2+10x^2y-3xy^2-xy+2\)

\(b,M=\left(3x^2y^2-5x^2y+8xy\right)-P\\ =\left(3x^2y^2-5x^2y+8xy\right)-\left(3x^2y-2xy^2-4xy+2\right)\\ =3x^2y^2-5x^2y+8xy-3x^2y^2+2xy^2+4xy-2\\ =-3x^2y+12xy-2\)

21 tháng 5 2017

câu 1.

P= 2(x+y)(x-y)+(x-y)^2+(x+y)^2-4y^2

P= (x+y+x-y)^2-(2y)^2

P=(2x-2y)(2x+2y)

P=4(x^2-y^2)

câu 2.

a, x^3-2x^2-4xy^2+x= x(x^2-2x+1)-4xy^2

                             =x(x-1)^2-4xy^2

                             =x(x-1-2y)(x-1+2y)

b, (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4)(x^2+5x+6)-24

Đặt x^2+5x+4= a

Lúc đó: (x+1)(x+2)(x+3)(x+4)-24= a(a+2)-24

                                              = a^2+2a-24

                                              =a^2+2a+1-25

                                              = (a+1)^2-5^2

                                              = (a+1-5)(a+1+5)

                                              = (a-4)(a+6)

mà ta đặt x^2+5x+4=a => (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4-4)(x^2+5x+4+6)

                                                                         = (x^2+5x)(x^2+5x+10)

câu3. (x+2)^2= 4-x^2

=> (x+2)^2-4+x^2=0

=>. (x+2)^2-(2-x)(2+x)=0

=> (x+2)(x+2-2+x)=0

=> (x+2)2x=0

=> x+2=0 hoặc 2x=0

=> x=-2 hoặc x=0

21 tháng 5 2017

1)P=2(x^2-y^2)+x^2-2xy+y^2+x^2+2xy+y^2-4y^2=2x^2-2y^2+2x^2+2y^2-4y^2=4x^2-4y^2 .                      3) <=> x^2+4x+4-4+x^2=0

<=> 2x^2+4x=0      <=>2x(x+2)=0     <=>2x=0 hay x+2=0      <=>x=0 hay x=-2

Bài 2: 

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)

Bài 3:

\(M=x^6-x^4-x^4+x^2+x^3-x\)

\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)

\(=8x^3-8x+8\)

\(=8\cdot8+8=72\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

\(\begin{array}{l}P = 5{x^4} - 3{x^3}y + 2x{y^3} - {x^3}y + 2{y^4} - 7{x^2}{y^2} - 2x{y^3}\\ = 5{x^4} + 2{y^4} + \left( { - 3{x^3}y - {x^3}y} \right) + \left( {2x{y^3} - 2x{y^3}} \right) - 7{x^2}{y^2}\\ = 5{x^4} + 2{y^4} - 4{x^3}y - 7{x^2}{y^2}\\Q = {x^3} + {x^2}y + x{y^2} - {x^2}y - x{y^2} - {x^3}\\ = \left( {{x^3} - {x^3}} \right) + \left( {{x^2}y - {x^2}y} \right) + \left( {x{y^2} - x{y^2}} \right)\\ = 0\end{array}\)

Do đó, bậc của đa thức P là 4; đa thức Q không có bậc.

Tại x = 1; y = -2, ta có:

 \(\begin{array}{l}P = 5.{1^4} + 2{(-2)^4} - 4.{1^3}(-2) - 7.{1^2}{(-2)^2}\\=5+2.16-4.(-2)-7.4=5+32+8-28\\=17\end{array}\)

\(Q = 0\)

20 tháng 4 2020

\(A=\frac{1}{x-y}+\frac{3xy}{x^3-y^3}+\frac{x-y}{x^2+xy+y^2}\)

Điều kiện : \(x-y\ne0\Leftrightarrow x\ne y\)

\(=\frac{1}{x-y}+\frac{x-y}{x^2+xy+y^2}+\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2+xy+y^2+\left(x-y\right)^2+3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2+4xy+y^2+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x^2+2xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2}{x-y}\)

20 tháng 4 2020

Ta có : \(\frac{a^4+b^4}{2}\ge\left(\frac{a+b}{2}\right)^4\) ( BĐT cosi ) 

\(\Rightarrow a^4+b^4\ge2\left(\frac{a+b}{2}\right)^4\)

\(\Rightarrow\left(2x-3\right)^4+\left(2x-5\right)^4=\left(2x-3\right)^4+\left(5-2x\right)^4\)

\(\ge2\left(\frac{2x-3+5-2x}{2}\right)^4=2\)

Dấu " = " xảy ra khi \(2x-3=5-2x\Rightarrow x=2\)

9 tháng 9 2020

           Bài làm :

 \(\text{a)}9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

 \(\text{b)}3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)

\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)

\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)

\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

 \(\text{c)}\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)

\(d ) x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

21 tháng 7 2017

1) \(x^2+4y^2+4xy\)

\(=\left(x+2y\right)^2\)

2 ) \(\left(x-y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\)

\(\Leftrightarrow\left(x-y-x+y\right)\left(x-y+x-y\right)=x+y-x+y\)

\(\Leftrightarrow2x-2y=2y\)

\(\Leftrightarrow2x+2y-2y=0\Leftrightarrow2\left(x+y-y\right)=0\Leftrightarrow2x=0\Leftrightarrow x=0\) :v

3 ) \(\left(4x+3\right)^2-\left(2x-1\right)^2\)

\(=\left(4x+3-2x+1\right)\left(4x+3+2x-1\right)\)

\(=\left(2x+4\right)\left(6x+2\right)\)

4 ) \(x^3+y^3+z^3-3xy\) ( thiếu đề sao á )

5 ) \(x^3-2xy+y^2-z^2\)

\(=x\left(x^2-2y\right)+\left(y-z\right)\left(y+z\right)\)

21 tháng 7 2017

1) \(x^2+4y^2+4xy=x^2+\left(2y\right)^2+2.x.2y=\left(x+2y\right)^2\)

2) wtf?

3) \(\left(4x+3\right)^2-\left(2x-1\right)^2=\left(4x+3-2x+1\right)\left(4x+3+2x-1\right)\)

\(=\left(2x+4\right)\left(6x+2\right)\)

4) \(x^3+y^3+z^3-3xyz\)

\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^2-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)